LIU Wei,ZHANG Yan-wei,WANG Yu-bin,et al.Screening of Soybean Drought Responsive GRAS Genes and Bioinformatics and Adversity Stress Expression Analysis on GmGRAS27[J].Soybean Science,2022,41(01):36-042.[doi:10.11861/j.issn.1000-9841.2022.01.0036]
大豆干旱响应GRAS基因筛选及GmGRAS27的生物信息学和逆境表达分析
- Title:
- Screening of Soybean Drought Responsive GRAS Genes and Bioinformatics and Adversity Stress Expression Analysis on GmGRAS27
- Keywords:
- soybean; drought; GRAS; GmGRAS27; bioinformatics; adversity stress; expression analysis
- 文献标志码:
- A
- 摘要:
- GRAS转录因子在植物抵抗非生物胁迫过程中发挥了重要作用,为了研究大豆GRAS基因在干旱胁迫中的响应,以挖掘大豆GRAS转录因子在干旱等非生物胁迫响应中的功能和分子机制提供分子基础,本研究利用基因表达综合数据库(Gene Expression Omnibus, GEO)筛选响应干旱胁迫的大豆GRAS基因,利用PlantCARE分析其启动子中的顺式作用元件。进一步对在营养生长时期(V6)和盛花期(R2)均受到干旱胁迫强烈诱导的GRAS基因GmGRAS27进行克隆和生物信息学分析,并采用实时荧光定量PCR方法分析干旱、盐和ABA胁迫下GmGRAS27基因的表达情况。结果显示:从大豆117个GRAS基因中筛选出10个响应干旱胁迫的GRAS基因,其启动子序列中均至少含有1个激素或逆境胁迫应答相关元件,GmGRAS27(Glyma.06G265500)基因的启动子同时含有ABRE应答元件和MYB/MYC结合元件。GmGRAS27在V6和R2期均受到干旱胁迫的强烈诱导,其编码的蛋白质GmGRAS27含有典型的GRAS基因家族结构域,高级结构以α-螺旋和无规则卷曲为主。实时荧光定量PCR分析显示GmGRAS27不仅受到干旱胁迫的强烈诱导,还受到盐胁迫和ABA的正向调控。推测GmGRAS27不仅是大豆干旱胁迫的重要候选基因也可能响应其他非生物胁迫。
- Abstract:
- GRAS transcription factors play important roles in resisting abiotic stresses in plants. In order to study the response of GRAS genes to drought stress in soybean, and to provide a molecular basis for mining the function and molecular mechanism of soybean GRAS transcription factors in response to drought stress, we analyzed the microarray data of soybean in Gene Expression Omnibus (GEO) database to identify drought responsive GRAS genes. The cis-acting elements in the promoters of the drought responsive GRAS genes were analyzed by PlantCARE. Then we cloned and performed bioinformatics analysis of a GRAS gene, GmGRAS27, which was up-regulated by drought stress in both the vegetative stage(V6) and the full flowering stage(R2). The promoter of GMGRAS27(Glyma.06g265500) gene contains both ABRE responsive element and MYB/MYC binding element. Furthermore, the expression of GmGRAS27 under drought, salt and ABA stress was analyzed by using the qRT-PCR method. The results displayed that, in the 117 soybean GRAS genes, 10 genes responded to the drought stress. All of the ten GRAS genes were found to possess at least one stress or hormone responsive element. GmGRAS27 was up-regulated by drought stress in both the vegetative stage (V6) and the full flowering stage (R2), and it encoded the product GmGRAS27 containing a conserved GRAS domain. The structure of GmGRAS27 was found to be mainly composed of α-helixes and random coils. GmGRAS27 was not only positively regulated by drought stress, but also induced by salt and ABA stress. These results suggested that GmGRAS27 might be an important candidate gene responding to abiotic stresses in soybean.
参考文献/References:
[1]崔维佳, 常志云, 李宁. 干旱胁迫对大豆生理生态及产量的影响[J]. 水资源与水工程学报, 2013, 24(4): 20-24. (CUI W J, CHANG Z Y, LI N. Effect of drought stress on physiology ecology and yield of soybean[J]. Journal of Water Resources and Water Engineering, 2013, 24(4): 20-24.) [2]LE D T, NISHIYAMA R, WATANABE Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11): e49522.[3]FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: Effects, mechanisms and management[J]. Sustainable Agriculture, 2009, 29(1): 153-188.[4]CHINNUSAMY V, SCHUMAKER K, ZHU J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of Experimental Botany, 2004, 55(395): 225-236.[5]PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, et al. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. The Plant Journal, 1999, 18(1): 111-119.[6]BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683-692. [7]SUN X, XUE B, JONES W T, et al. A functionally required unfoldome from the plant kingdom: Intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development[J]. Plant Molecular Biology, 2011, 77(3): 205-223.[8]TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Molecular Genetics and Genomics, 2006, 276(1): 13-30.[9]TORRES-GALEA P,HIRTREITER B,BOLLE C.Two GRAS proteins,SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANS-DUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiology, 2013, 161(1): 291-304.[10]SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949. [11]HEO J O, CHANG K S, KIM I A, et al. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proceedings of the National Academy of Sciences, 2011, 108(5): 2166-2171.[12]WANG L, MAI Y X, ZHANG Y C, et al. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis[J]. Molecular Plant, 2010, 3(5): 794-806.[13]CAI H, CHEN Y, ZHANG M, et al. A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm[J]. Physiology and Molecular Biology of Plants, 2017, 23(1): 143-154.[14]MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011-4019.[15]YANG M, YANG Q, FU T, et al. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Reports, 2011, 30(3): 373-388.[16]XU K, CHEN S, LI T, et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15(1): 1-13.[17]LIU Y, WEN L, SHI Y, et al. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling[J]. Plant Science, 2021, 304: 110804. [18]WANG T T, YU T F, FU J D, et al. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance[J]. Frontiers in Plant Science, 2020, 11: 604690. [19]BARRETT T, WILHITE S E, LEDOUX P, et al. NCBI GEO: Archive for functional genomics data sets-update[J]. Nucleic Acids Research, 2012, 41(D1): D991-D995.[20]GOODSTEIN D M, SHU S, HOWSON R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(D1): D1178-D1186.[21]LESCOT M, DHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.[22]HU B, JIN J, GUO A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.[23]MARCHLER-BAUER A, LU S, ANDERSON J B, et al. CDD: A conserved domain database for the functional annotation of proteins[J]. Nucleic Acids Research, 2010, 39(S1): D225-D229. [24]L〖KG(0.32mm〗IVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.[25]ABE H, YAMAGUCHI-SHINOZAKI K, URAO T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. The Plant Cell, 1997, 9(10): 1859-1868.[26]BALDONI E, GENGA A, COMINELLI E. Plant MYB transcription factors: Their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7): 15811-15851. [27]BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction[J]. Genes & Development, 2000, 14(10): 1269-1278. [28]ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1): 1-12.[29]YUAN Y, FANG L, KARUNGO S K, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 655-666. [30]WANG Z,WONG D C J,WANG Y,et al.GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J]. Plant Physiology, 2021, 186(3): 1660-1678. [31]TUTEJA N. Abscisic acid and abiotic stress signaling[J]. Plant Signaling & Behavior, 2007, 2(3): 135-138.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]闫春娟,王文斌,涂晓杰,等.不同生育时期干旱胁迫对大豆根系特性及产量的影响[J].大豆科学,2013,32(01):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
YAN Chun-juan,WANG Wen-bin,TU Xiao-jie,et al.Effect of Drought Stress at Different Growth Stage on Yield and Root Characteristics of Soybean[J].Soybean Science,2013,32(01):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
[12]刘颖,张明怡,韩光,等.干旱胁迫下钾对大豆叶片保护酶活性及产量的影响[J].大豆科学,2011,30(02):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
LIU Ying,ZHANG Ming-yi,HAN Guang,et al.Effect of Potassium on Soybean Leaf Protective Enzymes and Yield under Drought Stress[J].Soybean Science,2011,30(01):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
[13]钟鹏,吴俊江,刘丽君,等.干旱胁迫对不同磷效率基因型大豆膜脂过氧化作用的影响[J].大豆科学,2008,27(04):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
ZHONG-Peng,WU Jun-jiang,LIU Li-jun,et al.Effect of Drought Stress on Lipid Peroxidation in Soybean Varieties with Different P Efficiency[J].Soybean Science,2008,27(01):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
[14]王伟,姜伟,张金龙,等.大豆种质的耐旱性鉴定及耐旱指标筛选[J].大豆科学,2015,34(05):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
WANG Wei,JIANG Wei,ZHANG Jin-long,et al.Selection of Drought-tolerant Soybean and Evaluation of the Drought.tolerance Indices[J].Soybean Science,2015,34(01):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
[15]魏崃,吴广锡,唐晓飞,等.过表达GmHSFA1大豆在干旱条件下对高温的响应[J].大豆科学,2016,35(02):257.[doi:10.11861/j.issn.1000-9841.2016.02.0257]
WEI Lai,WU Guang-xi,TANG Xiao-fei,et al.Soybean Responses to High Temperatures Under Drought Stress in the Presence of An Over-expressed GmHSFA1 Gene[J].Soybean Science,2016,35(01):257.[doi:10.11861/j.issn.1000-9841.2016.02.0257]
[16]金毅,郑浩宇,金喜军,等.外源ABA、SA及JA对干旱胁迫及复水下大豆生长的影响[J].大豆科学,2016,35(06):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
JIN Yi,ZHENG Hao-yu,JIN Xi-jun,et al.Effect of ABA,SA and JA on Soybean Growth Under Drought Stress and Re-watering[J].Soybean Science,2016,35(01):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
[17]刘丽君,尹田夫,孟良.大豆原生质膜及混合细胞器膜脂脂肪酸对干旱胁迫的反应[J].大豆科学,1991,10(01):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
[J].Soybean Science,1991,10(01):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
[18]谢甫绨,董钻,赵艺新.大豆器官间的热能分布与耐旱性的关系初报[J].大豆科学,1993,12(02):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
[J].Soybean Science,1993,12(01):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
[19]刘莎莎,柏新富,冯春晓,等.干旱条件下土壤盐分对大豆生长及光合作用的影响[J].大豆科学,2017,36(06):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
LIU Sha-sha,BAI Xin-fu,FENG Chun-xiao,et al.Effects of Soil Salinity on the Growth and Photosynthesis of Soybean under Drought Conditions[J].Soybean Science,2017,36(01):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
[20]邹京南,金喜军,王孟雪,等.外源褪黑素对干旱胁迫条件下大豆苗期光合及生理的影响[J].大豆科学,2018,37(06):896.[doi:1011861/jissn1000-98412018060896]
ZOU Jing-nan,JIN Xi-jun,WANG Meng-xue,et al.Effects of Exogenous Melatonin on Photosynthesis and Physiology of Soybean Seedlings under Drought Stress[J].Soybean Science,2018,37(01):896.[doi:1011861/jissn1000-98412018060896]
备注/Memo
收稿日期:2021-07-30