[1]刘薇,张彦威,王玉斌,等.大豆干旱响应GRAS基因筛选及GmGRAS27的生物信息学和逆境表达分析[J].大豆科学,2022,41(01):36-042.[doi:10.11861/j.issn.1000-9841.2022.01.0036]
 LIU Wei,ZHANG Yan-wei,WANG Yu-bin,et al.Screening of Soybean Drought Responsive GRAS Genes and Bioinformatics and Adversity Stress Expression Analysis on GmGRAS27[J].Soybean Science,2022,41(01):36-042.[doi:10.11861/j.issn.1000-9841.2022.01.0036]
点击复制

大豆干旱响应GRAS基因筛选及GmGRAS27的生物信息学和逆境表达分析

参考文献/References:

[1]崔维佳, 常志云, 李宁. 干旱胁迫对大豆生理生态及产量的影响[J]. 水资源与水工程学报, 2013, 24(4): 20-24. (CUI W J, CHANG Z Y, LI N. Effect of drought stress on physiology ecology and yield of soybean[J]. Journal of Water Resources and Water Engineering, 2013, 24(4): 20-24.) [2]LE D T, NISHIYAMA R, WATANABE Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11): e49522.[3]FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: Effects, mechanisms and management[J]. Sustainable Agriculture, 2009, 29(1): 153-188.[4]CHINNUSAMY V, SCHUMAKER K, ZHU J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of Experimental Botany, 2004, 55(395): 225-236.[5]PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, et al. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. The Plant Journal, 1999, 18(1): 111-119.[6]BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683-692. [7]SUN X, XUE B, JONES W T, et al. A functionally required unfoldome from the plant kingdom: Intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development[J]. Plant Molecular Biology, 2011, 77(3): 205-223.[8]TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Molecular Genetics and Genomics, 2006, 276(1): 13-30.[9]TORRES-GALEA P,HIRTREITER B,BOLLE C.Two GRAS proteins,SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANS-DUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiology, 2013, 161(1): 291-304.[10]SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949. [11]HEO J O, CHANG K S, KIM I A, et al. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proceedings of the National Academy of Sciences, 2011, 108(5): 2166-2171.[12]WANG L, MAI Y X, ZHANG Y C, et al. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis[J]. Molecular Plant, 2010, 3(5): 794-806.[13]CAI H, CHEN Y, ZHANG M, et al. A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm[J]. Physiology and Molecular Biology of Plants, 2017, 23(1): 143-154.[14]MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011-4019.[15]YANG M, YANG Q, FU T, et al. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Reports, 2011, 30(3): 373-388.[16]XU K, CHEN S, LI T, et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15(1): 1-13.[17]LIU Y, WEN L, SHI Y, et al. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling[J]. Plant Science, 2021, 304: 110804. [18]WANG T T, YU T F, FU J D, et al. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance[J]. Frontiers in Plant Science, 2020, 11: 604690. [19]BARRETT T, WILHITE S E, LEDOUX P, et al. NCBI GEO: Archive for functional genomics data sets-update[J]. Nucleic Acids Research, 2012, 41(D1): D991-D995.[20]GOODSTEIN D M, SHU S, HOWSON R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(D1): D1178-D1186.[21]LESCOT M, DHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.[22]HU B, JIN J, GUO A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.[23]MARCHLER-BAUER A, LU S, ANDERSON J B, et al. CDD: A conserved domain database for the functional annotation of proteins[J]. Nucleic Acids Research, 2010, 39(S1): D225-D229. [24]L〖KG(0.32mm〗IVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.[25]ABE H, YAMAGUCHI-SHINOZAKI K, URAO T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. The Plant Cell, 1997, 9(10): 1859-1868.[26]BALDONI E, GENGA A, COMINELLI E. Plant MYB transcription factors: Their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7): 15811-15851. [27]BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction[J]. Genes & Development, 2000, 14(10): 1269-1278. [28]ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1): 1-12.[29]YUAN Y, FANG L, KARUNGO S K, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 655-666. [30]WANG Z,WONG D C J,WANG Y,et al.GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J]. Plant Physiology, 2021, 186(3): 1660-1678. [31]TUTEJA N. Abscisic acid and abiotic stress signaling[J]. Plant Signaling & Behavior, 2007, 2(3): 135-138.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]闫春娟,王文斌,涂晓杰,等.不同生育时期干旱胁迫对大豆根系特性及产量的影响[J].大豆科学,2013,32(01):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
 YAN Chun-juan,WANG Wen-bin,TU Xiao-jie,et al.Effect of Drought Stress at Different Growth Stage on Yield and Root Characteristics of Soybean[J].Soybean Science,2013,32(01):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
[12]刘颖,张明怡,韩光,等.干旱胁迫下钾对大豆叶片保护酶活性及产量的影响[J].大豆科学,2011,30(02):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
 LIU Ying,ZHANG Ming-yi,HAN Guang,et al.Effect of Potassium on Soybean Leaf Protective Enzymes and Yield under Drought Stress[J].Soybean Science,2011,30(01):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
[13]钟鹏,吴俊江,刘丽君,等.干旱胁迫对不同磷效率基因型大豆膜脂过氧化作用的影响[J].大豆科学,2008,27(04):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
 ZHONG-Peng,WU Jun-jiang,LIU Li-jun,et al.Effect of Drought Stress on Lipid Peroxidation in Soybean Varieties with Different P Efficiency[J].Soybean Science,2008,27(01):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
[14]王伟,姜伟,张金龙,等.大豆种质的耐旱性鉴定及耐旱指标筛选[J].大豆科学,2015,34(05):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
 WANG Wei,JIANG Wei,ZHANG Jin-long,et al.Selection of Drought-tolerant Soybean and Evaluation of the Drought.tolerance Indices[J].Soybean Science,2015,34(01):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
[15]魏崃,吴广锡,唐晓飞,等.过表达GmHSFA1大豆在干旱条件下对高温的响应[J].大豆科学,2016,35(02):257.[doi:10.11861/j.issn.1000-9841.2016.02.0257]
 WEI Lai,WU Guang-xi,TANG Xiao-fei,et al.Soybean Responses to High Temperatures Under Drought Stress in the Presence of An Over-expressed GmHSFA1 Gene[J].Soybean Science,2016,35(01):257.[doi:10.11861/j.issn.1000-9841.2016.02.0257]
[16]金毅,郑浩宇,金喜军,等.外源ABA、SA及JA对干旱胁迫及复水下大豆生长的影响[J].大豆科学,2016,35(06):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
 JIN Yi,ZHENG Hao-yu,JIN Xi-jun,et al.Effect of ABA,SA and JA on Soybean Growth Under Drought Stress and Re-watering[J].Soybean Science,2016,35(01):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
[17]刘丽君,尹田夫,孟良.大豆原生质膜及混合细胞器膜脂脂肪酸对干旱胁迫的反应[J].大豆科学,1991,10(01):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
 [J].Soybean Science,1991,10(01):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
[18]谢甫绨,董钻,赵艺新.大豆器官间的热能分布与耐旱性的关系初报[J].大豆科学,1993,12(02):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
 [J].Soybean Science,1993,12(01):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
[19]刘莎莎,柏新富,冯春晓,等.干旱条件下土壤盐分对大豆生长及光合作用的影响[J].大豆科学,2017,36(06):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
 LIU Sha-sha,BAI Xin-fu,FENG Chun-xiao,et al.Effects of Soil Salinity on the Growth and Photosynthesis of Soybean under Drought Conditions[J].Soybean Science,2017,36(01):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
[20]邹京南,金喜军,王孟雪,等.外源褪黑素对干旱胁迫条件下大豆苗期光合及生理的影响[J].大豆科学,2018,37(06):896.[doi:1011861/jissn1000-98412018060896]
 ZOU Jing-nan,JIN Xi-jun,WANG Meng-xue,et al.Effects of Exogenous Melatonin on Photosynthesis and Physiology of Soybean Seedlings under Drought Stress[J].Soybean Science,2018,37(01):896.[doi:1011861/jissn1000-98412018060896]

备注/Memo

收稿日期:2021-07-30

基金项目:山东省农业科学院农业科技创新工程(CXGC2021A30);山东省自然科学基金青年基金(ZR2020QC119);山东省农业科学院农业科技创新工程(CXGC2018E01);山东省农业良种工程(2019LZGC004)。
第一作者:刘薇(1987—),女,博士,助理研究员,主要从事大豆耐逆基因功能研究。E-mail:hnaulw@126.com。
通讯作者:张礼凤(1972—),女,研究员,主要从事大豆耐逆基因挖掘研究。E-mail:zhanglifeng9639@sina.com。

更新日期/Last Update: 2022-01-28