WANG Yang,BAI Xi.Bioinformatics Analysis of NAC Gene Family in Glycine max L.[J].Soybean Science,2014,33(03):323-333.[doi:10.11861/j.issn.1000-9841.2014.03.0325]
大豆NAC基因家族生物信息学分析
- Title:
- Bioinformatics Analysis of NAC Gene Family in Glycine max L.
- Keywords:
- Soybean; Bioinformatics; NAC gene family
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- NAC转录因子是植物特有的具有多种生物功能的一类重要转录因子,广泛参与植物生长发育以及生物与非生物逆境应答等。本文利用生物信息学手段,结合大豆基因组数据库及NCBI数据库,识别、筛选并获得了大豆NAC家族基因的蛋白序列,并对其进化关系、在基因组上的定位分布以及理化特性进行了预测和分析。结果显示具有NAC结构域的152条大豆氨基酸序列认为是假定NAC蛋白质,共分为10个亚家族,连锁群定位结果发现大豆的20条染色体上均有NAC转录因子的分布,其中第12号染色体上分布最多。不同亚族间的大豆假定NAC蛋白质理化特性存在一定的差异,无规则卷曲和α-螺旋是蛋白质二级结构最大量的结构元件,并散布于整个蛋白。本研究结果将为大豆NAC基因家族的进一步功能分析奠定重要的研究基础。
- Abstract:
- Genes containing the NAC domain(NAC family genes)are plantspecific transcriptional regulators and expressed in various developmental stages and tissues.We performed a bioinformatics analysis of NAC family genes in soybean.Based on bioinformatics methods,taking advantage of soybean database combined with public database(NCBI),we identified 152 NAC proteins from soybean genome.NAC domains from both predicted and known NAC family proteins were classified into ten subgroups by sequence similarity.Further genetic mapping of NAC genome localization found that they distributed on 20 chromosomes which the twelfth chromosome exist the most.We also predicted and analyzed their amino acid composition,physical and chemical characteristics,as well as secondary structures.The research found that the number of amino acid and hydrophobic of amino acid sequences in different subfamilies presented some differences.Meanwhile,the results of secondary structure predicted that the main composition of 152 predicted NAC proteins among them were random coil and alpha helix.The results of this investigation could definitely provide a significant foundation for further research on the function analysis of soybean NAC gene family.
参考文献/References:
[1]Birkenbihl R P,Jach G,Saedler H,et al.Functional dissection of the plant specific SBP domain:overlap of the DNA binding and nuclear localization domains[J].Journal of Molecular Biology,2005,352(3):585-596.
[2]Yang R C,Deng C T,Ouyang B,et al.Molecular analysis of two salt responsive NAC family genes and their expression analysis in tomato[J].Molecular Biology Reports,2011,38(2):857-863.
[3]He X J,Mu R L,Cao W H,et al.AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J].The Plant Journal,2005,44(6):903-916.
[4]Tran L S,Nakashima K,Sakuma Y,et al.Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis element in the early responsive to dehydration stress 1 promoter[J].Plant Cell,2004,16(9):2481-2498.
[5]Sablowski R W,Meyerowitz E M.A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA[J].Cell,1998,92(1):93-103.
[6]Nikovics K,Thomas B,Alexis P,et al.The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J].Plant Cell,2006,18(11):2929-2945.
[7]Xie Q,Frugis G,Colgan D,et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root developement[J].Genes & Development,2000,14(23):3024-3036.
[8]Ko J H,Yang S H,Park A H,et al.ANAC012,a member of the plant specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana [J].Plant Journal,2007,50(6):1035-1048.
[9]Mitsuda N,Seki M,Shinozaki K,et al.The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J].Plant Cell,2005,17(11):2993-3006.
[10]Yoo S Y,Kin Y,Kin S Y,et al.Control of flowering time and cold response by a NAC domain protein in Arabidopsis[J].PLoS One,2007,2(7):642.
[11]Jensen M K,Hagedorn P H,de Torres abala M,et al.Transcriptional regulation by an NAC(NAMATAF1,2CUC2)transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f.sp.hordei in Arabidopsis[J].Plant Journal,2008,56(6):867-880.
[12]Bu Q,Jiang H,Li C B,et al.Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acidsignaled defense responses[J].Cell Research,2008,18(7):756-767.
[13]Kim S G,Lee A K,Yoon H K,et al.A membranebound NAC transcription factor NTL8 regulates gibberellic acidmediated salt signaling in Arabidopsis seed germination[J].Plant Journal,2008,55(1):77-88.
[14]Kato H,Motomura T,Komeda Y,et al.Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana[J].Journal of Plant Physiology,2010,167(7):571-577.
[15]ShahnejatBushehri S,MuellerRoeber B,Balazadeh S.Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemoryassociated genes and enhances heat stress tolerance in primed and unprimed conditions[J].Plant Signaling & Behavior,2012,7(12):1518-1521.[16]Distelfeld A,Pearce S P,Avni R,et al.Divergent functions of orthologous NAC transcription factors in wheat and rice[J].Plant Molecular Biology,2012,78(4-5):515-524.
[17]Nuruzzaman M,Manimekalai R,Sharoni A M,et al.Genomewide analysis of NAC transcription factor family in rice[J].Gene,2010,465(1-2):30-44.
[18]刘洋,张慧,辛大伟,等.大豆TCP转录因子家族结构域分析及功能预测[J].大豆科学,2012,31(5):707-717.(Liu Y,Zhang H,Xin D W,et al.Domain analysis and function prediction of TCP transcription factors family in soybean[J].Soybean Science,2012,31(5):707-717.)
[19]Ooka H,Satoh K,Doi K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J].DNA Research,2003,10(6):239-247.
[20]李乐,许红亮,杨兴露,等.大豆LEA基因家族全基因组鉴定、分类和表达[J].中国农业科学,2011,44(19):3945-3954.(LI L,Xu H L,Yang X L,et al.Genomewide identification,classification and expression analysis of LEA gene family in soybean[J].Scientia Agricultura Sinica,2011,44(19):3945-3954.)
[21]陈莹,孙霞,胡尚连,等.拟南芥次生生长相关NAC转录因子保守结构与分析[J].西北农林科技大学学报,2009,37(5):185-194.(Chen Y,Sun X,Hu S L,et al.Analysis of NAC transcription factor and its domain with secondary growth in Arabidopsis thaliana[J].Journal of Northwest A&F University,2009,37(5):185-194.)
[22]江董丽,才华,端木慧子,等.大豆GST基因家族全基因组筛选、分类和表达[J].分子植物育种,2013,11(5):465-475.(Jiang D L,Cai H,Duanmu H Z,et al.Genomewide filter,classification and expression analysis of GST gene family in soybean[J].Molecular Plant Breeding,2013,11(5):465-475.)
[23]Zhang C H,Liu H,Yu M L,et al.Bioinformatics analysis for the NAC gene family in strawberry[J].Genomics and Applied Biology,2011,30(41):1261-1271.
[24]蒋瑶,陈其兵.植物CBF1转录因子的生物信息学分析[J].林业科学,2010,46(6):43-50.(Jiang Y,Chen Q B.Bioinformatic analysis of CBF1 transcription factors from the plants[J].Scientia Silvae Cinicae,2010,46(6):43-50.)
[25]Olsen A N,Ernst H A,Leggio L L,et al.NAC transcription factors:structurally distinct,functionally diverse[J].Trends in Plant Science,2005,10(2):79-87.
[26]Strauch M A,Ballar P,Rowshan A J,et al.The DNAbinding specificity of the Bacillus anthracis AbrB protein[J].Microbiology,2005,151(6):1751-1759.
[27]Peng H,Yu X W,Cheng H Y,et al.A survey of functional studies of the plantspecific NAC transcription factor family[J].Chinese Bulletin of Botany,2010,45(2):236-248.
[28]Wang N,Zheng Y,Xin H,et al.Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera[J].Plant Cell Rep orts,2013,32(1):61-75.
[29]Nuruzzaman M,Sharoni A M,Satoh K,et al.Comprehensive gene expression analysis of the NAC gene family under normal growth conditions,hormone treatment,and drought stress conditions in rice using nearisogenic lines(NILs)generated from crossing Aday Selection(drought tolerant)and IR64[J].Molecular Genetics Genomics,2012,287(5):389-410.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]方淑梅,韩毅强,张文慧,等.大豆DNA去甲基化酶IDM1基因5′调控区生物信息学分析[J].大豆科学,2014,33(04):483.[doi:10.11861/j.issn.1000-9841.2014.04.0483]
FANG Shu-mei,HAN Yi-qiang,ZHANG Wen-hui,et al.Bioinformatics Analysis on 5′ Regulatory Region Sequence of DNA Demethylatase Gene IDM1 in Soybean[J].Soybean Science,2014,33(03):483.[doi:10.11861/j.issn.1000-9841.2014.04.0483]
[12]钱 雪,孙晓丽,端木慧子,等.大豆基因组GmSRK及其同源基因的生物信息学分析[J].大豆科学,2014,33(04):497.[doi:10.11861/j.issn.1000-9841.2014.04.0497]
QIAN Xue,SUN Xiao-li,DUANMU Hui-zi,et al.Bioinformatics Analysis of GmSRK Homologous Genes in Soybean Genome[J].Soybean Science,2014,33(03):497.[doi:10.11861/j.issn.1000-9841.2014.04.0497]
[13]陈超,端木慧子,朱丹,等.大豆CML家族基因的生物信息学分析[J].大豆科学,2015,34(06):957.[doi:10.11861/j.issn.1000-9841.2015.06.0957]
CHEN Chao,DUANMU Hui-zi,ZHU Dan,et al.Bioinformatics Analysis of GmCML Genes in Soybean Genome[J].Soybean Science,2015,34(03):957.[doi:10.11861/j.issn.1000-9841.2015.06.0957]
[14]成舒飞,端木慧子,陈超,等.大豆MYB转录因子的全基因组鉴定及生物信息学分析[J].大豆科学,2016,35(01):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
CHENG Shu-fei,DUANMU Hui-zi,CHEN Chao,et al.Whole Genome Identification of Soybean MYB Transcription Factors and Bioinformatics Analysis[J].Soybean Science,2016,35(03):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
[15]李悦,张宇航,李冬梅,等.大豆GmABCG40基因的功能预测及表达分析[J].大豆科学,2017,36(04):502.[doi:10.11861/j.issn.1000-9841.2017.04.0502]
LI Yue,ZHANG Yu-hang,LI Dong-mei,et al.Functional Prediction and Expression Analysis of GmABCG40[J].Soybean Science,2017,36(03):502.[doi:10.11861/j.issn.1000-9841.2017.04.0502]
[16]王昭玉,甄珍,李雅琳,等.大豆转录因子GmWRKY4分子克隆与表达分析[J].大豆科学,2018,37(04):539.
WANG Zhao-yu,ZHEN Zhen,LI Ya-lin,et al.Cloning and Expression Analysis of Transcription Factors GmWRKY4 in Soybean[J].Soybean Science,2018,37(03):539.
[17]滕露,于月华,何茹月,等.大豆miR164家族的生物信息学分析[J].大豆科学,2018,37(05):704.[doi:10.11861/j.issn.1000-9841.2018.05.0704]
TENG Lu,YU Yue-hua,HE Ru-yue,et al.Bioinformatics Analysis of Soybean miR164Family[J].Soybean Science,2018,37(03):704.[doi:10.11861/j.issn.1000-9841.2018.05.0704]
[18]曹乐生,王晗慧,张天旭,等.大豆Argonaute4的生物信息学分析[J].大豆科学,2019,38(01):25.[doi:10.11861/j.issn.1000-9841.2019.01.0025]
CAO Le-sheng,WANG Han-hui,ZHANG Tian-xu,et al.Bioinformatics Analysis of Soybean Argonaute4[J].Soybean Science,2019,38(03):25.[doi:10.11861/j.issn.1000-9841.2019.01.0025]
[19]朱林,左妍妍,曹金山,等.大豆NRT1.2同源基因的生物信息学分析[J].大豆科学,2019,38(03):371.[doi:10.11861/j.issn.1000-9841.2019.03.0371]
ZHU Lin,ZUO Yan-yan,CAO Jin-shan,et al.Bioinformatic Analysis of NRT1.2 Homologous Gene in Soybean[J].Soybean Science,2019,38(03):371.[doi:10.11861/j.issn.1000-9841.2019.03.0371]
[20]方飞,杨云华,王丽群,等.大豆类受体激酶基因GmNIK的克隆与表达分析[J].大豆科学,2019,38(05):704.[doi:10.11861/j.issn.1000-9841.2019.05.0704]
FANG Fei,YANG Yun-hua,WANG Li-qun,et al.Cloning and Analysis of Receptor-like Kinase Gene GmNIK in Soybean[J].Soybean Science,2019,38(03):704.[doi:10.11861/j.issn.1000-9841.2019.05.0704]
备注/Memo
收稿日期:2013-08-05