[1]曹乐生,王晗慧,张天旭,等.大豆Argonaute4的生物信息学分析[J].大豆科学,2019,38(01):25-34.[doi:10.11861/j.issn.1000-9841.2019.01.0025]
 CAO Le-sheng,WANG Han-hui,ZHANG Tian-xu,et al.Bioinformatics Analysis of Soybean Argonaute4[J].Soybean Science,2019,38(01):25-34.[doi:10.11861/j.issn.1000-9841.2019.01.0025]
点击复制

大豆Argonaute4的生物信息学分析

参考文献/References:

[1]Song Q, Lu X, Li Q, et al. Genome-wide analysis of DNA methylation in soybean[J]. Molecular Plant, 2013, 6(6):1961-1974.
[2]Rodríguez-Leal D, Castillo-Cobián A, Rodríguez-Arévalo I, et al. A primary sequence analysis of the Argonaute protein family in plants[J]. Frontiers in Plant Science, 2016, 7:1347.
[3]Cho Y B, Jones S I, Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max[J]. Plant Cell, 2017, 29(4):708-725.
[4]Bender J. DNA methylation and epigenetics[J]. Annual Review of Plant Biology, 2004, 55(1):41-68.
[5]Zhong X. Comparative epigenomics: A powerful tool to understand the evolution of DNA methylation[J]. New Phytologist, 2016, 210(1):76-80.
[6]Movahedi A, Sun W, Zhang J, et al. RNA-directed DNA methylation in plants[J]. Plant Cell Reports, 2015, 34(11):1857-1862.
[7]Pck A, Dennis E S, Wang M B. Analysis of Argonaute 4-associated long non-coding RNA in Arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation[J]. Genes, 2017, 8(8):198.
[8]Wang F, Axtell M J. AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V-dependent loci in Arabidopsis thaliana[J]. Plant Journal, 2017, 90(1): 37-47.
[9]Lahmy S, Pontier D, Bies-Etheve N, et al. Evidence for Argonaute4-DNA interactions in RNA-directed DNA methylation in plants[J].Genes Development,2016,30(23):2565-2570.
[10]Xie M, Yu B. siRNA-directed DNA methylation in plants[J]. Current Genomics, 2015, 16(1):23-31.
[11]Rodríguez-Leal D, Castillo-Cobián A, Rodríguez-Arévalo I, et al. A primary sequence analysis of the ARGONAUTE protein family in plants[J]. Frontiers in Plant Science, 2016, 7:1347.
[12]Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010, 11(3):204-220.
[13]Zilberman D, Cao X, Jacobsen S E. Argonaute4 control of locus-specific siRNA accumulation and DNA and histone methylation[J]. Science, 2003, 299(5607):716-719.
[14]Pck A, Dennis E S, Wang M B. Analysis of Argonaute 4-associated long non-coding RNA in Arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation[J]. Genes, 2017, 8(8):198.
[15]Liu W, Duttke S H, Hetzel J, et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis[J].Nature Plants, 2018, 4(3):181-188.
[16]Parida A P, Sharma A, Sharma A K.AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins[J].Journal of Bioscience,2017,42(1):57-68.
[17]Córdoba-Caero D, Cognat V, Ariza R R, et al. Dual control of ROS1-mediated active DNA demethylation by DNA damage-binding protein 2(DDB2)[J].Plant Journal,2017,92(6):1181.
[18]Hernándezlagana E, Rodríguezleal D, Lúa J, et al. A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis[J]. Genetics, 2016, 204(3):1045-1056.
[19]Oliver C, Santos J L, Pradillo M. Accurate chromosome segregation at first meiotic division requires AGO4, a protein involved in RNA-dependent DNA methylation in Arabidopsis thaliana[J]. Genetics, 2016, 204(2):543-553.
[20]Kong W, Li B, Wang Q, et al. Analysis of the DNA methylation patterns and transcriptional regulation of the NB-LRR-encoding gene family in Arabidopsis thaliana[J]. Plant Molecular Biology,2018,96(6):563-575.
[21]Cao J Y, Xu Y P, Li W, et al. Genome-wide identification of Dicer-like, Argonaute, and RNA-dependent RNA polymerase gene families in brassicaspecies and functional analyses of their Arabidopsis homologs in resistance to sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2016, 7:1614.
[22]Li S, Xia Q, Wang F, et al. Laser irradiation-induced DNA methylation changes are heritable and accompanied with transpositional activation of mPing in rice[J].Frontiers in Plant Science, 2017,8:363.
[23]Schalk C, Molinier J. Global genome repair factors control DNA methylation patterns in Arabidopsis[J]. Plant Signaling & Behavior, 2016, 11(12): e1253648.
[24]Schalk C, Drevensek S, Kramdi A, et al. DNA DAMAGE BINDING PROTEIN 2 (DDB2) shapes the DNA methylation landscape[J]. Plant Cell, 2016, 28(9):2043-2059.
[25]Jin X, Guo X, Zhu D, et al. miRNA profiling in the mice in response to Echinococcus multilocularis infection[J]. Acta Tropica, 2017, 166:39-44.
[26]Brosseau C, El O M, Adurogbangba A, et al. Antiviral defense involves AGO4 in an Arabidopsis-potexvirus interaction[J]. Molecular plant-microbe interactions, 2016, 29(11):878-888.
[27]Hamera S, Yan Y, Song X, et al. Expression of Cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana[J]. Biology Open, 2016, 5(11):1727-1734.
[28]刘宇原, 付爱根, 徐敏. 大豆转座子的研究现状及应用前景[J]. 大豆科学, 2016, 35(3):512-518. (Liu Y Y, Fu A G, Xu M. Research status and application prospects of soybean transposon[J]. Soybean Science, 2016, 35(3): 512-518.)
[29]Song J J,Liu J,Tolia N H, et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes[J]. Nature Structural Biology, 2003, 10(12):1026-1032.
[30]Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: The novel PAZ domain and redefinition of the Piwi domain[J]. Trends in Biochemical Sciences, 2000, 25(10):481.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-08-03

基金项目:中央高校基本科研业务费专项资金项目(2572017DA06,2572014CA21)。
第一作者简介:曹乐生(1997-),男,学士,主要从事大豆表观遗传学调控因子研究。E-mail:caolesheng@nefu.edu.cn。
通讯作者:解莉楠(1978-),女,博士,副教授,主要从事植物抗逆生物学研究。E-mail:linanxie@nefu.edu.cn。

更新日期/Last Update: 2019-01-22