(XU Wei-jia,LU Jin,GAO Hui-hui,et al.Mapping of Distichous Alternate Phyllotaxis Gene in Cultivated Soybean[J].Soybean Science,2021,40(04):457-465.[doi:10.11861/j.issn.1000-9841.2021.04.0457]
栽培大豆二列状互生叶序基因初步定位
- Title:
- Mapping of Distichous Alternate Phyllotaxis Gene in Cultivated Soybean
- Keywords:
- Soybean; Plant architecture; Distichous alternate phyllotaxis; BSA-Seq; Mutant; Cytokinin
- 文献标志码:
- A
- 摘要:
- 二列状互生叶序表现为所有三出复叶呈平面状排列,为给栽培大豆(Glycine max)二列状互生叶序的形成机理解析提供参考,促进大豆密植条件下株型研究和分子遗传改良,本研究利用大豆品种中品661经EMS诱变获得的二列状互生叶序新种质皖中黄601与中黄13配置杂交组合,调查F5植株株型,利用F5交互互生性状和二列状互生性状分别构建混池,采用BSA-seq方法进行基因定位,并进行GO功能注释分析。结果表明:BSA-seq测序结果与参考基因组平均比对效率为94.30%,平均覆盖深度为38.01×。SNP-index和Indel-index方法关联分析,在14和15号染色体定位到4个候选区域,区段内共包含216个基因,GO分析表明其中4个基因响应细胞分裂素,4个基因响应乙烯,1个基因响应赤霉素,8个基因响应生长素。不同类型二列状互生叶序顶端分生组织和叶节的细胞分裂素含量显著低于交互互生叶序,与交互互生大豆不同的是,二列状互生大豆顶端分生组织的细胞分裂素含量明显低于叶节部位,说明细胞分裂素分布的差异可能是二列状互生叶序形成的重要原因。
- Abstract:
- The distichous alternate phyllotaxis was a plane arrangement of all three compound leaves. In order to provide a reference for the formation mechanism of distichous alternate phyllotaxis in cultivated soybean (Glycine max), and promote the plant type research and molecular genetic improvement of soybean under dense condition, this study investigated a distichous phyllotaxis novel germplasm (Wanzhonghuang 601) obtained by EMS mutagenesis of soybean cultivar Zhongpin 661. We used this mutant in combination with the Zhonghuang 13 configuration, and investigated the type of F5 plants. And then we constructed the mixed pools by using F5 decussate alternate and distichous alternate traits, respectively, and performed the gene mapping by BSA-Seq method, and took on the GO functional annotation analysis. The results showed that, the average comparison efficiency between the BSA-Seq and the reference genome was 94.30%, and the average coverage depth was 38.01×. According to the SNP-index and Indel-index association analysis, four regions were mapped on chromosomes 14 and 15, comprising a total of 216 genes. Through GO analysis, there were five genes responding to cytokinin, four genes responding to ethylene, one gene responding to gibberellin, and eight genes responding to auxin. Meanwhile, the content of CTK in SAM (shoot apical meristem) and leaf segment of distichous phyllotaxis soybean were significantly lower than that of alternate phyllotaxis soybean, as well as the CTK content of SAM in distichous phyllotaxis soybean was lower than leaf segment, however, it was opposite in alternate phyllotaxis soybean. These results indicated that the difference of cytokinin distribution may be an important reason for the formation of distichous alternate phyllotaxis.
参考文献/References:
[1]Wu W, Zhang Q, Zhu Y M,et al. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance[J]. Journal of Agricultural and Food Chemistry, 2008, 56(23): 118-132.[2]Wilcox J R. Soybeans:Improvement, production and uses[J]. Agricultural Systems, 2005, 83(1): 110-111.[3]王金陵. 东北地区大豆株型的演变[J]. 大豆通报, 1996(1): 5-7. (Wang J L. Evolution of soybean plant type in Northeast China[J]. Soybean Bulletin, 1996(1): 5-7.)[4]Giulini A, Wang J, Jackson D.Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1[J]. Nature, 2004, 430: 1031-1034.[5]张学英, 侯雪琪, 周淑芹, 等. 浅谈大豆理想株型育种[J]. 大豆通报, 1994(4): 15-16. (Zhang X Y, Hou X Q, Zhou S Q, et al. Discussion on soybean ideal plant type breeding[J]. Soybean Bulletin, 1994(4): 15-16.)[6]王金陵. 中国大豆主产区主要推广品种株型变化的回顾[J]. 东北农学院学报, 1993(3): 209-213. (Wang J L. Review of plant type changes of main soybean varieties in China[J]. Journal of Northeast Agricultural University, 1993(3): 209-213.)[7]薛红, 宁海龙, 杨兴勇, 等. 大豆产量相关性状的遗传分析[J]. 黑龙江农业科学, 2020(2): 1-8. (Xue H, Ning H L, Yang X Y, et al. Genetic effects analysis of yield-related traits in soybean[J]. Heilongjiang Agricultural Sciences, 2020 (2): 1-8.)[8]李灿东, 郭泰, 王志新, 等. 大豆耐密性状与产量的相关分析[J].大豆科学, 2019, 38(6): 862-867. (Li C D, Guo T, Wang Z X, et al. Correlation analysis of density tolerance traits and yield on soybean[J]. Soybean Science, 2019, 38(6): 862-867.)[9]樊海潮, 张继雨, 王俊涛, 等. 种植密度对大豆新品种产量及农艺性状的影响[J]. 山东农业科学, 2020, 52(2): 38-42. (Fan H C, Zhang J Y, Wang J T, et al. Effect of different planting densities on yield and agronomic characters of new soybean varieties[J]. Shandong Agricultural Sciences, 2020, 52(2): 38-42.)[10]吴海涛, 张勇, 苏伯鸿, 等. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. (Wu H T, Zhang Y, Su B H, et al. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean(Glycine max)[J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.)[11]Cheng Q, Dong L, Su T,et al. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean[J]. BMC Plant Biology, 2019, 19(1): 562.[12]Gao J, Yang S, Cheng W,et al. GmILPA1, encoding an APC8-like protein, controls leaf petiole angle in soybean[J]. Plant Physiology, 2017, 174(2): 1167-1176.[13]Fang C, Ma Y, Wu S,et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J]. Genome Biology, 2017, 18(1): 161.[14]晏静, 任永泉. 水稻理想株型研究综述[J]. 北方水稻, 2010, 40(2): 68-71. (Yan J, Ren Y Q. Review on ideal plant type research in rice[J]. North Rice, 2010, 40(2): 68-71.)[15]Khush G S. Breaking the yield frontier of rice[J]. Geosciences Journal, 1995, 35(3): 329-332.[16]Ashikari M, Sakakibara H, Lin S,et al. Cytokin in oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.[17]郁晓敏, 金杭霞, 杨清华, 等. 利用SLAF-seq结合BSA方法发掘大豆种皮色相关基因[J]. 分子植物育种, 2021, 19(2): 385-391. (Yu X M, Jin H X, Yang Q H, et al. Mapping of soybean genes related to seed-coat color using SLAF-seq and BSA methods[J]. Molecular Plant Breeding, 2021, 19(2): 385-391.)[18]Jackson D, Hake S. Control of phyllotaxis in maize by the abphyl1 gene[J]. Development, 1999, 126: 315-323.[19]Smith R S, Guyomarc’h S, Mandel T, et al. A plausible modle of phyllotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1301-1306.[20]Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs[J]. The Plant Cell, 2000, 12(4): 507-518.[21]Martinez C C, Chitwood D H, Smith R S,et al. Left-right leaf asymmetry in decussate and distichous phyllotactic systems[J]. Philosophical Transactions of the Royal Society of London, 2011, 371(1710):20150412.[22]Liu S L, Zhang M, Feng M,et al. Toward a “Green Revolution” for soybean[J]. Molecular Plant, 2020, 13(5): 688-697.[23]陈静静, 刘谢香, 于莉莉, 等. 利用BSA法发掘野生大豆种子硬实性相关QTL[J]. 中国农业科学, 2019, 52(13): 2208-2219. (Chen J J, Liu X X, Yu L L, et al. QTL mapping of hard seededness in wild soybean using BSA method[J]. Scientia Agricultura Sinica, 2019, 52 (13): 2208-2219.)[24]张之昊, 王俊, 刘章雄, 等. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因[J]. 作物学报, 2020, 46(12): 1839-1849. (Zhang Z H, Wang J, Liu Z X, et al. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean(Glycine max)[J]. Acta Agronomica Sinica, 2020, 46 (12): 1839-1849.)[25]王全喜, 张小平. 植物学[M]. 2版. 北京: 科学出版社, 2004: 363-365. (Wang Q X, Zhang X P. Botany[M]. 2nd Edition. Beijing: Science Press, 2004: 363-365.)[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J].Proceedings of the National Academy of Sciences of the United States of America, 1991, 88 (21): 9828-9832.[27]McKenna A, Hanna M, Banks E,et al. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303.[28]Cingolani P, Platts A, Wang L L,et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly, 2012, 6(2): 80-92.[29]Deng Y, Li J Q, Wu S F,et al. Integratednr database in protein annotation system and its localization[J]. Computer Engineer, 2006, 32(5): 71-73,76.[30]Chen L, Yang H, Fang Y,et al. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway[J/OL]. Plant Biotechnology Journal, 2020. https://doi.org/10.1111/pbi.13496.[31]Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yield in soybean plants via the manipulation of GmmiR156b[J]. Plant Biotechnology Journal, 2019, 17: 50-62.[32]Lyu X G, Cheng Q C, Qin C,et al. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light[J]. Molecular Plant, 2020, 14(2): 298-314.[33]Byrne M E, Groover A T, Fontana J R,et al. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER[J]. Development, 2003, 130: 3941-3950.[34]Kanrar S, Onguka O, Smith H M S. Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers[J]. Planta, 2006, 224: 1163-1173.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]闫昊,刘宝泉,王博.矮秆大豆株高遗传及主茎节间长度相关分析[J].大豆科学,2009,28(04):595.[doi:10.11861/j.issn.1000-9841.2009.04.0595]
YAN Hao,LIU Bao-quan,WANG Bo.Inheritance of Plant Height and Its Correlation with Internode Length in Dwarf Soybean[J].Soybean Science,2009,28(04):595.[doi:10.11861/j.issn.1000-9841.2009.04.0595]
[12]满为群 杜维广 张桂茹 栾晓燕 陈怡 谷秀芝.大豆超高产潜力的探讨[J].大豆科学,2001,20(02):94.[doi:10.11861/j.issn.1000-9841.2001.02.0094]
Man Weiqun Du Weiguang Zhang Guiru Luan Xiaoyan Chen Yi Gu Xiuzhi.STUDDYON SUPER-HIGH YIELD POTENTIALITYOF SOYBEAN[J].Soybean Science,2001,20(04):94.[doi:10.11861/j.issn.1000-9841.2001.02.0094]
[13]石连旋 苗以农 朱长甫.大豆光合生理生态的研究第18 报不同株型大豆某些生理特性的研究[J].大豆科学,2003,22(02):97.[doi:10.11861/j.issn.1000-9841.2003.02.0097]
Shi Lianxuan Miao Yinong Zhu Changfu.PRELIMINARY STUDIES ON SOME PHYSIOLOGICAL CHARACTERSOF SOYBEAN LINESWITH DIFFERENT PLANT -TYPES[J].Soybean Science,2003,22(04):97.[doi:10.11861/j.issn.1000-9841.2003.02.0097]
[14]林蔚刚,许忠仁,胡立成,等.不同株型大豆品种叶荚粒垂直分布规律的初步分析[J].大豆科学,1995,14(01):53.[doi:10.11861/j.issn.1000-9841.1995.01.0053]
[J].Soybean Science,1995,14(04):53.[doi:10.11861/j.issn.1000-9841.1995.01.0053]
[15]王海英 张惠君 刘 闯 谢甫绨 * Steven SK Martin.中国辽宁省与美国近纬度地区新育成大豆品种的株型与产量的比较研究*[J].大豆科学,2005,24(04):286.[doi:10.11861/j.issn.1000-9841.2005.04.0286]
Wang Haiying Zhang Huijun Liu Chuang Xie Futi Steven SK Martin.COMPARISON ON THE PLANTTYPE AND YIELD OF SOYBEAN VARIETIESFROM CLOSE LATITUDEOF CHINA AND AMERICA[J].Soybean Science,2005,24(04):286.[doi:10.11861/j.issn.1000-9841.2005.04.0286]
[16]杨梦平,潘丽丽,张勇,等.株距对不同株型大豆农艺性状及产量的影响[J].大豆科学,2017,36(03):377.[doi:10.11861/j.issn.1000-9841.2017.03.0377]
YANG Meng-ping,PAN Li-li,ZHANG Yong,et al.Effect of Plant Spacing on Agronomic Trait and Yield of Different Plant Type Soybean[J].Soybean Science,2017,36(04):377.[doi:10.11861/j.issn.1000-9841.2017.03.0377]
备注/Memo
收稿日期:2021-03-08