[1]顾鑫,杨晓贺,姚亮亮,等.大豆灰斑病菌Race 15的全基因组测序分析[J].大豆科学,2021,40(04):466-475.[doi:10.11861/j.issn.1000-9841.2021.04.0466]
 GU Xin,YANG Xiao-he,YAO Liang-liang,et al.Whole-Genome Sequencing and Analysis of Cercospora Sojina Race 15[J].Soybean Science,2021,40(04):466-475.[doi:10.11861/j.issn.1000-9841.2021.04.0466]
点击复制

大豆灰斑病菌Race 15的全基因组测序分析

参考文献/References:

[1]Dashiell K E, Akem C N. Yield losses in soybeans from frogeye leaf spot caused by Cercospora sojina[J]. Crop Protection, 1991, 10(6): 465-468.[2]Boerma H R, Specht J E, Boerma H R, et al. Soybeans:Improvement, production and uses[M]. Madison: ASA, CSSA, and SSSA, 2004: 679-763.[3]Athow K L, Probst A H. The inheritance of resistance to frogeye leaf spot of soybean[J]. Phytopathology, 1952, 42(12): 660-662.[4]Athow K L, Probst A H, Kurtzman C P, et al. A newly identified physiological race of Cercospora sojina on soybean[J]. Phytopathology, 1962, 52: 712-714.[5]Yorinori J T, Homechin M. Races of Cercospora sojina in Parajme Brazil[C]//3rd. Munich: International Congress of Plant Pathology, 1978: 16-23.[6]黄桂潮, 霍虹, 张再兴, 等. 大豆灰斑病菌(Cercospora Sojina Hara)生理小种鉴定结果初报[J]. 大豆科学, 1984, 3(3): 231-235. (Huang G C, Huo H, Zhang Z X, et al. Preliminary reporton the identification results of physiological races of Cercospora Sojina Hara[J]. Soybean Science, 1984, 3(3): 231-235.)[7]霍虹, 马淑梅, 卢官仲. 黑龙江省大豆灰斑病菌(Cercospora sojina Hara)生理小种的研究[J]. 大豆科学, 1988, 7(4): 315-320. (Huo H, Ma S M, Lu G Z. Study on the physiological race of Cercospora sojina Hara in Heilongjiang Province[J]. Soybean Science, 1988, 7(4): 315-320.)[8]丁俊杰, 文景芝, 胡国华. 黑龙江省大豆灰斑病生理小种监测及主栽品种抗性分析[J]. 大豆科学, 2009, 28(1): 178-180. (Ding J J, Wen J Z, Hu G H. Physiological race monitoring of soybean gray spot disease in Heilongjiang Province and resistance analysis of main varieties[J]. Soybean Science, 2009, 28(1): 178-180.)[9]刘洋大川, 潘春清, 孙洪利. 2008—2009年黑龙江省大豆灰斑病菌生理小种的监测[J]. 东北农业大学学报, 2010, 41(11): 10-16. (Liu Y D C, Pan C Q, Sun H L. Surveillance of the physiological races of gray leaf spot pathogen of soybean in Heilongjiang Province from 2008 to 2009[J]. Journal of Northeast Agricultural University, 2010, 41(11): 10-16.)[10]曹越平, 李海英, 刘学敏. 等. 大豆灰斑病菌(Cercospora sojina Hara)及其对寄主作用的研究[J]. 植物病理学报, 2003, 32(2): 116-120. (Chao Y P, Li H Y, Liu X M, et al. Cercospora sojina Hara and its effect on the host[J]. Chinese Journal of Phytopathology, 2003, 32(2):116-120.)[11]姜翠兰, 丁俊杰, 文景芝, 等.大豆对灰斑病菌15号小种的抗病基因定位及标记检测[J]. 植物保护学报, 2011, 38(2): 116-120. (Jiang C L, Ding J J, Wen J Z, et al. Identification and mapping of the Cercospora sojina race 15 resistance gene in soybean[J]. Acta Phytophylacica Sinica, 2011, 33(1):57-61.)[12]顾鑫, 丁俊杰, 杨晓贺, 等. 2008—2009年黑龙江省大豆灰斑病生理小种的监测[J]. 大豆科学, 2010, 29(3): 540-542. (Gu X, Ding J J, Yang X H, et al. Surveillance of the physiological races of soybean gray spot disease in Heilongjiang Province from 2008 to 2009[J]. Soybean Science, 2010, 29 (3): 540-542.)[13]马淑梅. 2006—2010年黑龙江省大豆灰斑病菌生理小种监测及部分主栽品种抗性鉴定[J]. 大豆科学, 2011, 30(3): 450-454. (Ma S M. Physiological race monitoring of gray leaf spot pathogen of soybean in Heilongjiang Province from 2006 to 2010 and identification of resistance of some main cultivated varieties[J]. Soybean Science, 2011, 30(3): 450-454.)[14]丁俊杰, 顾鑫, 杨晓贺, 等. 黑龙江省大豆灰斑病菌生理小种及遗传关系分析[J]. 中国农业科学, 2012, 45(21): 4377-4387. (Ding J J, Gu X, Yang X X, et al. Analysis of the physiological race and genetic relationship of soybean gray leaf spot in Heilongjiang Province[J]. Chinese Agricultural Sciences, 2012, 45(21): 4377-4387.)[15]刘学敏, 李利军, 惠东威, 等. 大豆灰斑病菌DNA指纹图谱初步分析[J]. 遗传学报, 1998(4): 362-366. (Liu X M, Li L J, Hui D W, et al. Preliminary analysis of DNA fingerprinting of soybean gray leaf spot pathogen[J]. Acta Genetics, 1998(4): 362-366.)[16]Zeng F, Wang C, Zhang G R. Draft genome sequence of Cercospora sojina isolate S9, a fungus causing frogeye leaf spot (FLS) disease of soybean[J]. Genomics Data, 2017(12): 79-80.[17]刘林, 李成云, 杨静, 等. 稻瘟病菌ABC转运蛋白基因中SSR的分布及其功能预测[J]. 植物病理学报, 2011, 41(4): 371-378. (Liu L, Li C Y, Yang J, et al. The distribution and function prediction of SSR in the ABC transporter gene of Magnaporthe grisea[J]. Acta Phytopathology, 2011, 41(4): 371-378.)[18]Daub M E, Ehrenshaft M. The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology[J]. Annual Review of Phytopathology, 2000, 38: 461-490.[19]Luo X, Cao J, Huang J, et al. Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean[J]. DNA Research, 2017, 25(1): 25-37. [20]Shrestha S K, Cochran A, Mengistu A, et al. Genetic diversity, QoI fungicide resistance, and mating type distribution of Cercospora sojina—Implications for the disease dynamics of frogeye leaf spot on soybean[J]. Plos One, 2017, 12(5): e0177220. [21]张伟. 捕食性真菌Duddingtonia flagrans全基因组测序及基于转录组分析的捕食相关基因研究[D]. 呼和浩特: 内蒙古农业大学, 2017: 17. (Zhang W. Predatory fungus Duddingtonia flagrans whole genome sequencing and predation-related genes based on transcriptome analysis[D]. Hohhot: Inner Mongolia Agricultural University, 2017: 17.)[22]李焕宇, 付婷婷, 张云, 等. 5种方法提取真菌基因组 DNA作为PCR模板效果的比较[J]. 中国农学通报, 2017, 33(16): 28-35. (Li H Y, Fu T T, Zhang Y, et al. Comparison of the effects of five methods for extracting fungal genomic DNA as PCR templates[J]. Chinese Agricultural Science Bulletin, 2017, 33(16): 28-35.)[23]贾乐东. 甘蓝型油菜隐性杂合两型系SLAB育性候选基因的筛选鉴定[D]. 重庆: 西南大学, 2017:32. (Jia L D. Screening and identification of SLAB fertility candidate genes in recessive heterozygous two-type lines of Brassica napus[D]. Chongqing: Southwest University, 2017: 32.)[24]王义华. 葡萄属叶绿体基因组分析及其系统发育研究[D]. 武汉: 华中农业大学, 2018:15. (Wang Y H. Chloroplast genome analysis of Vitis and its phylogeny[D]. Wuhan: Huazhong Agricultural University, 2018:15.)[25]白健. 应用新一代基因组学技术的复杂疾病基因定位研究[D]. 北京: 中国科学院北京基因组研究所, 2013: 22-23. (Bai J. Research on gene mapping of complex diseases using new generation genomics technology[D]. Beijing: Beijing Institute of Genomics, Chinese Academy of Sciences, 2013: 22-23.)[26]张娜. 一株贫营养细菌的生物学特性及其对贫瘠土壤的改良作用[D]. 银川: 宁夏大学, 2017: 20.(Zhang N. The biological characteristics of a poor nutrient bacterium and its improvement on poor soil [J]. Yinchuan: Ningxia University, 2017:20.)[27]谢海坤, 焦健, 樊秀彩, 等. 基于高通量测序组装“赤霞珠”叶绿体基因组及其特征分析[J]. 中国农业科学, 2017, 50(9): 1655-1665. (Xie H K, Jiao J, Fan X C, et al. Assembling and characteristic analysis of the complete chloroplastgenome of Vitis vinifera cv. Cabernet Sauvignon from high-throughput sequencing data[J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.) [28]张继垒. 犬埃立克体(Ehrlichia canis)分离鉴定、基因组学及动物感染模型的建立[D].扬州: 扬州大学, 2018:110. (Zhang J L. Ehrlichia canis isolation and identification, genomics and animal infection model establishment[D]. Yangzhou: Yangzhou University, 2018:110.)[29]Stanke M, Diekhans M, Baertsch R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding[J]. Bioinformatics, 2008, 24(5): 637-644.[30]Saha S, Bridges S, Magbanua Z V, et al. Empirical comparison of abinitio repeat finding programs[J]. Nucleic Acids Research, 2008, 36(7): 2284-2294. [31]Benson G. Tandem repeats finder: A program to analyze DNA sequences[J]. Nucleic Acids Research, 1999, 27(2): 573-580. [32]Lowe T M, Eddy S R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964.[33]Lagesen K, Hallin P, Rdland E A, et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Research, 2007, 35(9): 3100-3108.[34]Gardner P P, Daub J, Tate J G, et al. Rfam: Updates to the RNA families database[J]. Nucleic Acids Research, 2009, 37(S1): 136-140.[35]Nawrocki E P, Kolbe D L, Eddy S R. Infernal 1.0: Inference of RNA alignments[J]. Bioinformatics, 2009, 25(10): 1335-1337. [36]Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29.[37]Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(S1): D277-D280.[38]Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: New developments in KEGG[J]. Nucleic Acids Research, 2006, 34(suppl 1): D354-D357.[39]Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases [J]. Bioinformatics, 2002, 18(1): 77-82.[40]Milton S J, Vamsee S R, Dorjee G T, et al. The transporter classification database[J]. Nucleic Acids Research, 2014. doi:10.1093/nar/gkt1097.[41]Amos B, Rolf A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Research, 2000, 28(1): 45-48.[42]Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(S1): D233-D238.[43]Kretschmer M, Reiner E, Hu G, et al. Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans[J]. Infection and Immunity, 2014, 82(7): 2697-2712.[44]Tseng M N, Chung P C, Tzean S S. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes[J]. Applied and Environmental Microbiology, 2011, 77(13):4508-4519.[45]Jacobson E S. Pathogenic roles for fungal melanins[J]. Clinical Microbiology Reviews, 2000, 13: 708-717.[46]Nosanchuk J D, Casadevall A. The contribution of melanin to microbial pathogenesis[J]. Cellular Microbiology, 2010, 5(4): 203-223. [47]Nosanchuk J D, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds[J]. Antimicrobial Agents & Chemotherapy, 2006, 50(11): 3519-3528.[48]Xue M, Yang J, Li Z, et al. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae[J]. PLoS Genet, 2012, 8(8): e1002869.[49]Liu Q P, Sulzenbacher G, Yuan H, et al. Bacterial glycosidases for the production of universal red blood cells[J]. Nature Biotechnology, 2007, 25(4): 454-464.[50]Benhamou N, Ouellette G B.Ultrastructural localization of glycoconjugates in the fungus Ascocalyx abietina, the Scleroderris canker agent of conifers, using lectin-gold complexes[J]. Journal of Histochemistry & Cytochemistry, 1986, 34(7):855-867.[51]Barkai-Golan R, Mirelman D, Sharon N. Studies on growth inhibition by lectins of Penicillia and Aspergilli[J]. Archives of Microbiology, 1978, 116(2): 119-121.[52]Guo P, Wang Y, Zhou X, et al. Expression of soybean lectin in transgenic tobacco results in enhanced resistance to pathogens and pests[J]. Plant Science, 2013, 211(3): 17-22.[53]董章勇, 王振中. 植物病原真菌细胞壁降解酶的研究进展[J].湖北农业科学, 2012, 51(21): 4697-4700. (Dong Z Y, Wang Z Z. Research progress on cell wall degrading enzymes of plant pathogenic fungi[J]. Hubei Agricultural Sciences, 2012, 51(21): 4697-4700.)[54]陈夕军, 张红, 徐敬友, 等. 水稻纹枯病菌胞壁降解酶的产生及致病作用[J]. 江苏农业学报, 2006,22(1): 24-28. (Chen X J, Zhang H, Xue J Y, et al. Cell wall degrading enzymes produced by Rhizoctonia solani and their pathogenicity to rice plants[J]. Jiangsu Journal of Agricultural Sciences, 2006,22(1): 24-28.)[55]赵艳琴, 吴元华, 伏颖, 等. 烟草靶斑病菌(Rhizoctonia solani)细胞壁降解酶活性分析及其致病作用[J]. 烟草科技, 2014(11): 84-88. (Zhao Y Q, Wu Y H, Fu Y, et al. Activity pathogenic effect of cell wall degrading enzyme in tobacco target spot pathogen Rhizoctonia solani[J]. Tobacco Science & Technology, 2014(11): 84-88.)[56]李庆亮, 李捷, 李夏鸣, 等. 细胞壁降解酶在苹果霉心病菌致病过程中的作用研究[J]. 中国农学通报, 2015, 31(31): 90-95. (Li Q L, Li J, Li X M, et al. The role of cell wall degradation enzymes in the pathogenic processes of apple mouldy core caused by Alternaria alternate and Trichothecium roseum[J]. Chinese Agricultural Science Bulletin, 2015, 31(31): 90-95.)[57]Sasaki I, Nagayama H. β-Glucosidase from Botrytis cinerea: Its relation to the pathogenicity of this fungus[J]. Journal of the Agricultural Chemical Society of Japan, 1994, 58(4): 616-620.[58]王鹏程, 郝海婷, 王兰, 等. 枣黑斑病菌细胞壁降解酶活性测定及致病性分析[J]. 果树学报, 2019,36(7): 903-910. (Wang P C, Hao H T, Wang L, et al. Analysis of cell wall degrading enzymes from black spot pathogen and its pathogenicity[J]. Journal of Fruit Science, 2019,36(7): 903-910.)[59]田呈明, 赵鹏, 曹支敏. 细胞壁降解酶在落叶松-杨栅锈菌与寄主互作过程中的作用[J]. 林业科学, 2008,44(5): 79-83. (Tian C M, Zhao P, Chao Z M. Role of cell wall-degrading enzymes in interaction of poplar and Melampsora larici-populina[J].Scientia Silvae Sinicae, 2008,44(5): 79-83.)[60]Boraston A, Bolam D, Gilbert H, et al. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition[J]. Biochemical Journal, 2004, 382(3): 769.[61]Receveur V, Czjzek M, Schulein M, et al. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering[J]. Journal of Biological Chemistry, 2002, 277(43): 40887-40892.[62]Varnai A, Siika-Aho M, Viikari L. Carbohydrate-binding modules (CBMs)revisited: Reduced amount of water counterbalances the need for CBMs[J]. Biotechnol Biofuels, 2013, 6(1): 30.[63]Song W, Han X, Qian Y, et al. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system[J]. Biotechnology for Biofuels, 2016, 9(1): 68.[64]Sims J W, Fillmore J P, Warner D D, et al. Equisetin biosynthesis in Fusarium heterosporum[J]. Chemical Communications, 2005, 18(2): 186. [65]Song Z, Cox R J, Lazarus C M, et al. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum[J]. Combining Chemistry and Biology, 2004, 5(9): 1196-1203.[66]Bergmann S, Schümann J, Scherlach K, et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans[J]. Nature Chemical Biology, 2007, 3(4): 213-217.[67]Bohnert H U. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 16(9): 2499-2513.

相似文献/References:

[1]尹俊琦,王 楠,周 莹,等.两个大豆品种转hrpZPsta基因后代对大豆灰斑病的抗性分析[J].大豆科学,2013,32(02):238.[doi:10.3969/j.issn.1000-9841.2013.02.022]
 YIN Jun-qi,WANG Nan,ZHOU Ying,et al.Analysis on Resistance to Frogeye Leaf Spot between Two Species of Transgenic Soybean Progenies with HrpZpsta Gene[J].Soybean Science,2013,32(04):238.[doi:10.3969/j.issn.1000-9841.2013.02.022]
[2]马淑梅.2006~2010年黑龙江省大豆灰斑病菌生理小种监测及部分主栽品种抗性鉴定[J].大豆科学,2011,30(03):450.[doi:10.11861/j.issn.1000-9841.2011.03.0450]
 MA Shu-mei.Monitoring of Physiological Races of Cercospora sojina in Heilongjiang Province from 2006 to 2010 and Resistance Identification of Partial Main Cultivars[J].Soybean Science,2011,30(04):450.[doi:10.11861/j.issn.1000-9841.2011.03.0450]
[3]顾鑫,丁俊杰,杨晓贺,等.2008~2009年黑龙江省大豆灰斑病生理小种的监测[J].大豆科学,2010,29(03):540.[doi:10.11861/j.issn.1000-9841.2010.03.0540]
 GU Xin,DING Jun-jie,YANG Xiao-he,et al.Monitoring of Physiological Race of Cercospora sojina in Heilongjiang Province between 2008 and 2009[J].Soybean Science,2010,29(04):540.[doi:10.11861/j.issn.1000-9841.2010.03.0540]
[4]丁俊杰.影响大豆灰斑病主要气象因子的通径分析[J].大豆科学,2010,29(04):727.[doi:10.11861/j.issn.1000-9841.2010.04.0727]
 DING Jun-jie.Path Analysis on Main Meteorological Factors Affecting Soybean Frogeye Leaf Spot[J].Soybean Science,2010,29(04):727.[doi:10.11861/j.issn.1000-9841.2010.04.0727]
[5]丁俊杰,文景芝,胡国华,等.黑龙江省大豆灰斑病生理小种监测及主栽品种抗性分析[J].大豆科学,2009,28(01):178.[doi:10.11861/j.issn.1000-9841.2009.01.0178]
 DING Jun-jie,WEN Jing-zhi,HU Guo-hua,et al.Monitoring of Physiological Race of Soybean Frogeye Spot and Analysis of Variety Resistance in Heilongjiang Province[J].Soybean Science,2009,28(04):178.[doi:10.11861/j.issn.1000-9841.2009.01.0178]
[6]姜翠兰,胡国华,丁俊杰,等.气象因子对黑龙江省大豆灰斑病发生的影响[J].大豆科学,2009,28(02):276.[doi:10.11861/j.issn.1000-9841.2009.02.0276]
 JIANG Cui-lan,HU Guo-hua,DING Jun-jie,et al.Effect of Meteorological Factors on Frogeye Leafspot of Soybean in Heilongjiang Province[J].Soybean Science,2009,28(04):276.[doi:10.11861/j.issn.1000-9841.2009.02.0276]
[7]刘亚光,赵滨,马超.水杨酸和壳聚糖诱导大豆对灰斑病的抗性[J].大豆科学,2008,27(02):298.[doi:10.11861/j.issn.1000-9841.2008.02.0298]
 LIU Ya-guang,ZHAO Bin,MA Chao.Induction effect of Salicylic acid and Chitosan on Frogeye Leaf Spot in Soybean[J].Soybean Science,2008,27(04):298.[doi:10.11861/j.issn.1000-9841.2008.02.0298]
[8]王德亮杨丹霞姜玉久阎晓东井旭源.大豆不同株龄及不同的叶龄、荚龄对灰斑病的反应[J].大豆科学,2000,19(02):126.[doi:10.11861/j.issn.1000-9841.2000.02.0126]
 Wang Delia ngYang Danx iaJiang YujouYan Xiaodo ngJing Xuyuan.THE REACTION OF VARIOUS AGE OF NODES LEAVESAND PODS OF SOYBEAN TO FROGEYE LEAF SPOT[J].Soybean Science,2000,19(04):126.[doi:10.11861/j.issn.1000-9841.2000.02.0126]
[9]曹越平杨庆凯.大豆灰斑病抗感标准划分的研究[J].大豆科学,2002,21(02):113.[doi:10.11861/j.issn.1000-9841.2002.02.0113]
 Cao YuepingYang Qing kai.STUDY ON RESISTANCE STANDARD OF SOYBEAN PLANTS TOCERCOSPOR A SOJIN A Hara[J].Soybean Science,2002,21(04):113.[doi:10.11861/j.issn.1000-9841.2002.02.0113]
[10]刘亚光李海英杨庆凯.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学,2002,21(03):195.[doi:10.11861/j.issn.1000-9841.2002.03.0195]
 Liu Yag uangLi HaiyingYang Qingkai.STUDY ON THE RELATIONSHIP BETWEEN RESISTANCE OF SOYBEAN AND ACTIVITYOF PAL IN LEAVES OF SOYBEAN INFECTED BY CERCOSPORA SOJINA HARA[J].Soybean Science,2002,21(04):195.[doi:10.11861/j.issn.1000-9841.2002.03.0195]

备注/Memo

收稿日期:2021-02-18

基金项目:黑龙江省应用技术研究与开发计划(GA20B104);财政部和农业农村部:国家现代农业产业技术体系建设专项(CARS04CES05);农业科技创新跨越工程(HNK2019CX14);黑龙江省自然科学基金(JJ2021LH1520)。
第一作者:顾鑫(1980—),男,博士,副研究员,主要从事作物病虫害防治研究。E-mail:guxin1111@163.com。
通讯作者:丁俊杰(1974—),男,博士,研究员,主要从事大豆病虫害研究。E-mail:me999@126.com。

更新日期/Last Update: 2021-08-06