[1]Qi X P, Li M W, Xie M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communications, 2014, 5: 4340 [2]Li Y H, Zhou G Y, Ma J X, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nature Biotechnology, 2014, 32: 1045-1052
[3]Won-HYong C, Amhee J N, JIwoong K, et al. Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes[J].DNA Research, 2014, 21: 153-167.
[4]Goettel W, Xia E, Upchurch R, et al. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content[J]. BMC Genomics, 2014, 15: 299
[5]Eun-Young H, Song Q J, Jia G F, et al.A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics, 2014 15: 1.
[6]Liu D, Ma C, Hong W, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLOS ONE, 2014, 9(6): e98855
[7]Qi Z, Huang L, Zhu R, et al. A high-density genetic map for soybean based on specific length amplified fragment sequencing[J]. PLOS ONE, 2014, 9(8): e104871
[8]Hu Z B, Zhang D, Zhang G Z, et al. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb and Zucc)[J]. Breeding Science, 2014, 63: 441-449
[9]Zhang W J, Niu Y, Bu S H, et al.Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage[J]. PLOS ONE, 2014, 9(1): e84750
[10]Sun J T, Li L H, Zhao J M, et al.Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L) Merr][J].Theoretical and Applied Genetics, 2014, 127: 913-919.
[11]Sun J, Guo N, Lei J, et al.Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L) Merr)[J]. Journal of Genetics, 2014, 93(2): 355-363.
[12]Lee S, Rouf M A, Sneller C H, et al. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions[J]. Theoretical and Applied Genet,ics 2014, 127: 429-444.
[13]Jiao Y, Vuong T D, Liu Y, et al.Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655[J]Theoretical and Applied Genetics, 2014, 128: 15-23.
[14]Wen Z X, Tan R J, Yuan J Z, et al.Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean[J]. BMC Genomics, 2014, 15: 809
[15]Kim H, Xing G N, Wang Y F, et al. Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations[J]. Euphytica, 2014, 196: 137-154
[16]Kim K S, Chirumamilla A, Hill C B, et al. Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732[J]. Theoretical and Applied Genetics, 2014, 127: 1251-1259.
[17]Kato S, Sayama T, Fujii K, et al. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds[J]. Theoretical and Applied Genetics, 2014, 127: 1365-1374.
[18]Che J Y, Ding J J, Liu C Y, et al. Quantative trait loci of seed traits for soybean in multiple environments[J]. Genetics and Molecular Research, 2014, 13 (2): 4000-4012.
[19]Xie F T, Niu Y, Zhang J, et al. Fine mapping of quantitative trait loci for seed size traits in soybean[J]. Molecular Breeding, 2014, 34: 2165-2178.
[20]Yan L, Li Y H, Yang C Y, et al. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max×Glycine soja[J]. Plant Breeding, 2014, 133(5): 632-637
[21]Wang W B, He Q Y, Yang H Y, et al. Identification of QTL/segments related to seed-quality traits in G.soja using chromosome segment substitution lines[J]. Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1): 65-S69.[22]He Q Y, Yang H Y, Xiang S H, et al.QTL mapping for the number of branchesand pods using wild chromosome segment substitution lines in soybean [Glycine max(L) Merr][J]. Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1): 172-S177
[23]Hwang Sadal, Ray Jeffery D, Cregan Perry B, et al.Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L[Merr])[J].Euphytica, 2014, 195: 419-434
[24]Dong Y, Yang X, Liu J, et al. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean[J]. Nature Communications, 2014, 5: 3352
[25]Yan L, Xing L L, Yang C Y, et al. Identification of quantitative trait loci associated with soybean seed protein content using two populations derived from crosses between Glycine max and Glycine soja[J].Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1); 104-S108
[26]Qi Z M, Hou M, Han X, et al.Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environment[J]. Plant Breeding, 2014, 133: 499-507
[27]Akond Masum, Liu S M, Boney Melanie, et al. Identification of Quantitative Trait Loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean[J].American Journal of Plant Sciences, 2014, 5: 158-167.
[28]Zhang D, Kan G Z, Hu Z B, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics, 2014, 127: 1905-1915
[29]Wang J, Liu L, Guo Y, et al. Dominant locus, Qbsc-1, controls beta subunit content of seed storage protein in soybean (Glycine max (L) Merri)[J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864
[30]Wang X Z, Jiang G L, Song Q J, et al.Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean [J]. Euphytica, 2014, 201: 293-305.
[31]Ramamurthy R K, Jedlicka J, Graef G L, et al.Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L) Merr][J].Mol Breeding, 2014, 34: 431-445
[32]Qi Z M, Han X, Hou M, et al. QTL analysis of soybean oil content under 17 environments[J] Canadian Journal of Plant Science, 2014, 94: 245-261.
[33]Wang X Z, Jiang G L, Green Marci, et al. Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean[J].Mol Breeding, 2014, 33: 281-296
[34]Ha B K, Kim H J, Velusamy V, et al. Identification of quantitative trait loci controlling linolenic acid concentration in PI483463 (Glycine soja)[J]. Theoretialc and Applied Genetics, 2014, 127: 1501-1512
[35]Cardinal A J, Whetten R, Wang S, et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Theoretialc and Applied Genetics, 2014, 127: 97-111
[36]Akond Masum, Liu S M, Kantartzi Stella K, et al. Quantitative trait loci for seed isoflavone contents in ‘MD96-5722’ by ‘Spencer’ recombinant inbred lines of soybean[J].Journal of Agricultural and Food Chemistry, 2014, 62: 1464-1468
[37]Zhang H J, Li J W, Liu Y J, et al. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds[J]. Journal of Genetics, 2014, 93(2): 331-338
[38]Wang Y, Han Y P, Teng W L, et al. Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L Merr) seed. BMC Genomics 2014, 15: 680
[39]Smallwood C J, Nyinyi C N, Kopsell D A, et al. Detection and confirmation of quantitative trait loci for soybean seed isoflavones[J].Crop Science, 2014, 54: 595-606
[40]Zeng A, Chen P, Shi A, et al. Identification of quantitative trait loci for sucrose content in soybean seed[J]. Crop Science, 2014, 54(2): 554-564
[41]Mamidi S, Lee R K, Goos J R, et al. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max)[J]. PIOS ONE, 2014, 9(9): e107469
[42]Zhang D, Song H, Cheng H, et al. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress[J]. PLOS Genet, 2014, 10(1): e1004061.
[43]Abdel-Haleem H, Carter J T E, Rufty T W, et al. Quantitative trait loci controlling aluminum tolerance in soybean: Candidate gene and single nucleotide polymorphism marker discovery[J] Molecular Breeding, 2014, 33: 851-862
[44]Yang W M, Wang M, Yue A Q, et al. QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L) across different environments[J]. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics, 2014, 67(1): 72-78
[45]Kebede H, Smith J R, Ray J D.Identification of a single gene for seed coat impermeability in soybean PI 594619[J]. Theoretical and Applied Genetics, 2014, 127: 1991-2003
[46]Shim H C, Ha B K, Yoo M, et al. Detection of quantitative trait loci controlling UV-B resistance in soybean[J].Euphytica, 2014, 202: 109-118
[47]Langewisch T, Zhang H, Vincent R, et al. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes[J].PLOS ONE, 2014, 9(4): e94150
[48]Wang Y, Cheng L R, Leng Ji T, et al. Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean (Glycine max (L) Merr)[J].Euphytica, 2014, 201: 275-284.
[49]Liang H Z, Yu Y J, Yang H Q, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127(10): 2127-2137
[50]Bolon Y T, Hyten D L, Orf J H, et al.eQTL networks reveal complex genetic architecture in the immature soybean seed[J].The Plant Genome 7, 2014, 7(1): 1-14.
[51]Ping J Q, Liu Y F, Sun L J, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean[J].The Plant Cell, 2014, 26(7): 2831-42
[52]曲忠诚.SSR分子标记在大豆原原种提纯中的应用[J]. 安徽农业科学,2014,42(26): 8887-8889.(Qu Z C. Application of SSR markers in soybean original seed purification[J] Journal of Anhui Agricultural Sciences, 2014, 42(26): 8887-8889.)
[53]任海红,刘学义,朱保葛,等.大豆百粒重相关分子标记的实用性分析与验证[J].分子植物育种,2014,12(1):69-73.(Ren H H, Liu X Yi, Zhu B G, et al. Practical analysis & verification of molecular marker of weight of 100-seed in soybean[J].Molecular Plant Breeding, 2014, 12(1): 69-73.)
[54]杨凯敏,李贵全,郭数进,等.大豆自然群体 SSR标记遗传多样性及其与农艺性状的关联分析[J]. 核农学报,2014,28(9):1576-1584.(Yang K M, Li G Q, Guo S J, et al. Genetic diversity and association analysis of SSR markers and agronomic traits in natural populations of soybean[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1576-1584.)
[55]张春宝,邱红梅,赵洪锟,等.东北地区大豆种质遗传多样性的SRAP标记分析[J] 大豆科学,2014,33(1):17-22.(Zhang C B, Qiu H M, Zhao H K, et al. Genetic diversity analysis of soybean germplasm in northeast region of China by SRAP markers[J]. Soybean Science, 2014, 33(1): 17-22.)
[56]李海燕,韩英鹏,武小霞,等. 大豆维生素 E 遗传图谱构建及QTL分析[J]. 大豆科学,2014,33(4):492-496.(Li H Y,Han Y P,Wu X X, et al.QTL analysis of soybean vitamin E and genetic map construction[J]. Soybean Science, 2014, 33(4): 492-496.)
[57]邹筱,韩粉霞,陈明阳,等.大豆脂肪酸主要组分含量QTL定位[J]. 作物学报,2014,40(9):1595-1603.(Zou X, Han F X, Chen M Y, et al. Quantitative trait loci of major fatty acid components in soybean[J]. Acta Agronomica Sinica, 2014, 40(9): 1595-1603.)
[58]马岩松,刘鑫磊,栾晓燕,等.大豆胞囊线虫病抗性基因相关分子标记对杂交后代抗性的鉴定效率[J].大豆科学,2014,33(2):173-178.(Ma Y S, Liu X L, Luan X Y, et al.Identification efficiency about resistance to Soybean Cyst Nematode with relative molecular markers in hybrid progeny[J].Soybean Science, 2014, 33(2): 173-178.)
[59]安咏梅,王家军,李进荣,等. 大豆抗胞囊线虫的分子标记研究[J]. 黑龙江农业科学,2014(7):15-17.(An Y M, Wang J J, Li J R, et al. Molecular markers with soybean cyst nematode resistance[J]. Heilongjiang Agricultural Sciences, 2014(7): 15-17.)
[60]袁翠平,赵洪锟,王玉民,等. 利用 SSR标记评价抗胞囊线虫野生大豆种质的遗传多样性[J]. 大豆科学,2014,33(2):147-153.(Yuan C P, Zhao H K, Wang Y M, et al.Genetic diversity of wild soybean (Glycine soja) resistant germplasms to soybean Cyst Nematode revealed by SSR markers[J]. Soybean Science, 2014, 33(2): 147-153.)
[61]韩英鹏,赵雪,李修平,等. 大豆种质对花叶病毒病和疫霉根腐病抗病性的SSR标记辅助鉴定[J].大豆科学,2014,33(1):27-30.(Han Y P, Zhao X, Li X P, et al.SSR identification of soybean cultivar with resistance to Soybean Mosaic Virus and Phytophthpra Root Rot[J].Soybean Science, 2014, 33(1):27-30.)
[62]洪雪娟,黄婧,丁卉,等.大豆异地衍生重组自交系群体产量相关性状的QTL定位[J].中国油料作物学报,2014,36(5):572-579.(Hong X J,Huang J, Ding H, et al. Detection of soybean QTLs on yield-related traits in RIL populations derived from Peking ×7605 in two sites[J].Chinese Journal of Oil Crop Sciences, 2014, 36(5): 572-579.)
[63]姚丹,王丕武,张君,等.大豆主要产量性状QTL定位分析[J].华南农业大学学报,2014,35(3):41-46.(Yao D, Wang P W, Zhang J, et al. A QTL mapping analysis of main yield traits in soybean[J]. Journal of South China Agricultural University, 2014, 35(3): 41-46.)
[64]陈庆山,蒋洪蔚,孙殿君,等. 利用野生大豆染色体片段代换系定位百粒重QTL[J].大豆科学,2014,33(2):154-160.(Chen Q S, Jiang H W, Sun D J, et al. QTL mapping for 100-seed weight using wild soybean chromosome segment substitution lines[J]. Soybean Science, 2014, 33(2): 154-160.)
[65]杨胜先,牛远,李梦,等.栽培大豆农艺性状的关联分析及优异等位变异挖掘[J].中国农业科学,2014,47(20):3941-3952.(Yang S X, Niu Y, Li M, et al. Association mapping of agronomic traits in soybean (Glycine max L Merr) and mining of novel alleles[J]. Scientia Agricultura Sinica, 2014, 47(20): 3941-3952.)
[66]陈强,闫龙,杨春燕,等. 冀豆12遗传背景下3个回交组合高低蛋白含量后代品系SSR标记分析[J].中国农业科学,2014,47(2):230-239.(Cheng Q, Yan L, Yang C Y, et al. SSR markers linked to high and low protein content strains derived from 3 backcross combinations under Jidou 12 genetic background[J].Scientia Agricultura Sinica, 2014, 47(2): 230-239.)
[67]马占洲,孙殿君,蒋洪蔚,等.野生大豆回交导入系蛋白质含量性状的QTL分析[J].中国油料作物学报,2014,36(3):316-322.(Ma Z Z, Sun D J, Jiang H W, et al. Genotyping and QTL mapping of protein content with wild soybean backcross introgressive lines[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(3): 316-322.)
[68]王琳琳,刘春燕,姜振峰,等. 多环境条件下大豆蛋白质含量稳定性QTL分析[J].中国油料作物学报,2014,36(4):443-449.(Wang L L, Liu C Y, Jiang Z F, et al. Analysis of QTL underlying protein content of soybean in multi-environments[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(4): 443-449.)
[69]邱红梅,郝文媛,高淑芹,等.大豆含硫氨基酸相关酶基因发掘[J].遗传,2014,遗传,2014,36(9):934-942.(Qiu H M, Hao W Y, Gao S Q, Gene mining of sulfur-containing amino acid metabolic enzymes in soybean[J]. Hereditas, 2014, 36(9): 934-942)
[70]侯萌,齐照明,韩雪,等.大豆蛋白质和油分含量QTL定位及互作分析[J]. 中国农业科学,2014,47(13):2680-2689.(Hou M, Qi Z M, Han X, et al. QTL mapping and interaction analysis of seed protein content and oil content in soybean[J]. Scientia Agricultura Sinica, 2014, 47(13): 2680-2689.)
[71]沈岩茹,刘春燕,姜振峰,等. 大豆油分含量稳定性QTL定位[J]. 分子植物育种,2014,12(2):254-261.(Shen Y R, Liu C Y, Jiang Z F, et al. QTL analysis of stability for oil content in soybean[J]. Molecular Plant Breeding, 2014, 12(2): 254-261.)
[72]苗兴芬,李灿东,郑殿峰,等. 大豆油酸含量相关QTL间的上位效应和QE互作效应[J].大豆科学,2014,33(1):23-30.(Miao X F, Li C D, Zheng D F, et al. Epistatic effects of QTLs and QE interaction effects on oleic acid content in soybean [J].Soybean Science, 2014, 33(1):23-30.)
-[73]齐照明,侯萌,韩雪,等.东北地区大豆主栽品种油分蛋白含量的关联分析[J]. 中国油料作物学报,2014,36(2):168-174.(Qi Z M, Hou M, Han X, et al.Association analysis of soybean oil and protein content for northeast soybean cultivar in China[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 168-174.)
[74]梁慧珍,余永亮,杨红旗,等. 幼苗期大豆根系性状的遗传分析与QTL检测[J]. 中国农业科学,2014,47(9):1681-1691.(Liang H Z, Xu Y L, Yang H Q, et al. Genetic and QTL analysis of root traits at seedling stage in soybean [Glycine max(L) Merr] [J].Scientia Agricultura Sinica, 2014, 47(9): 1681-1691.)
[75]王欢,孙霞,岳岩磊,等. 东北春大豆花荚脱落性状与SSR标记的关联分析[J]. 土壤与作物 2014,3(1):32-40.(Wang H, Sun X, Yue Y L, et al.Association mapping of flower and pod abscission with SSR markers in northeast spring sowing soybeans[J]. Soil and Crop, 2014, 3(1): 32-40.)