[1]祁平,郑凯杰,赵晓宇,等.根瘤菌侵染早期大豆根系的转录组分析[J].大豆科学,2021,40(03):289-298.[doi:10.11861/j.issn.1000-9841.2021.03.0289]
 QI Ping,ZHENG Kai-jie,ZHAO Xiao-yu,et al.Transcriptome Analysis of Soybean Root System in the Early Stage of Rhizobium Infection[J].Soybean Science,2021,40(03):289-298.[doi:10.11861/j.issn.1000-9841.2021.03.0289]
点击复制

根瘤菌侵染早期大豆根系的转录组分析

参考文献/References:

[1]Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130164.[2]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.[3]Graham P H. Legumes: Importance and constraints to greater use[J]. Plant Physiology, 2003, 131(3): 872-877.[4]Iqbal A, Khalil I A, Ateeq N, et al. Nutritional quality of important food legumes[J]. Food Chemistry, 2006, 97(2): 331-335.[5]Tharanathan R N, Mahadevamma S. Grain legumes—A boon to human nutrition[J]. Trends in Food Science & Technology, 2003, 14(12): 507-518.[6]Bohra A, Mir R R, Jha R, et al. Advances in genomics and molecular breeding for legume improvement[M]∥Tuteja N, Tuteja R, Passricha N, et al. Advancement in crop improvement techniques, Elsevier: Woodhead Publishing, 2020: 129-139.[7]Fowler D, Steadman C E, Stevenson D, et al. Effects of global change during the 21st century on the nitrogen cycle[J]. Atmospheric Chemistry and Physics, 2015, 15(24): 13849-13893.[8]Franssen H J, Vijn I, Yang W C, et al. Developmental aspects of the rhizobium-legume symbiosis[J]. Plant Molecular Biology, 1992, 19(1): 89-107. [9]Barnett M J, Fisher R F. Review article: Global gene expression in the rhizobial-legume symbiosis[J]. Symbiosis, 2006, 42(1): 1-24.[10]Oldroyd G E D, Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology, 2008, 59: 519-546. [11]Geurts R, Fedorova E, Bisseling T. Nod factor signaling genes and their function in the early stages of rhizobium infection[J]. Current Opinion in Plant Biology, 2005, 8(4): 346-352.[12]Zipfel C, Oldroyd G E D. Plant signalling in symbiosis and immunity[J]. Nature, 2017, 543(7645): 328-336.[13]Geurts R, Bisseling T. Rhizobium nod factor perception and signalling[J]. The Plant Cell, 2002, 14(S1): S239-S249.[14]Long S R. Genes and signals in the rhizobium-legume symbiosis[J]. Plant Physiology, 2001, 125(1): 69-72.[15]Saito K, Yoshikawa M, Yano K, et al. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus[J]. The Plant Cell, 2007, 19(2): 610-624. [16]Stacey G, Libault M, Brechenmacher L, et al. Genetics and functional genomics of legume nodulation[J]. Current Opinion in Plant Biology, 2006, 9(2): 110-121. [17]Limpens E, Bisseling T. Nod factor signal transduction in the rhizobium-legume symbiosis[M]. Springer Berlin Heidelberg, 2009: 249-276.[18]Hayashi T, Shimoda Y, Sato S, et al. Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking[J]. The Plant Journal, 2014, 77(1): 146-159. [19]Wong J E M M, Nadzieja M, Madsen L H, et al. A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation[J]. Proceedings of the National Academy of Sciences, 2019, 116(28): 14339-14348.[20]Antolín-Llovera M, Ried M K, Parniske M. Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod Factor Receptor 5[J]. Current Biology, 2014, 24(4): 422-427. [21]Kanamori N, Madsen L H, Radutoiu S, et al. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis[J]. Proceedings of the National Academy of Sciences, 2006, 103(2): 359-364.[22]Tirichine L, Sandal N, Madsen L, et al. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis[J]. Science, 2007, 315(5808): 104-107.[23]Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1): 57-63.[24]Yuan S L, Li R, Chen H F, et al. RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2[J]. Scientific Reports, 2017, 7(1): 1-14.[25]Niyikiza D, Piya S, Routray P, et al. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity[J]. The Plant Journal, 2020, 103(5): 1744-1766.[26]Hayashi S, Reid D E, Lorenc M T, et al. Transient Nod factor‐dependent gene expression in the nodulation‐competent zone of soybean (Glycine max[L.] Merr.) roots[J]. Plant Biotechnology Journal, 2012, 10(8): 995-1010.[27]Carvalho G A, Batista J S, Marcelino-Guimares F C, et al. Transcriptional analysis of genes involved in nodulation in soybean roots inoculated with Bradyrhizobium japonicum strain CPAC 15[J]. BMC Genomics, 2013, 14(1): 1-11.[28]Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data[J]. Molecular Biology and Evolution, 2016, 33(6):1635-1638.[29]Libault M, Farmer A, Joshi T, et al. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants[J]. The Plant Journal, 2010, 63(1): 86-99.[30]Karim S, Lundh D, Holmstrm K O, et al. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis[J]. Journal of Molecular Modeling, 2005, 11(3): 226-236.[31]Karim S, Holmstrm K O, Mandal A, et al. AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis[J]. Planta, 2007, 225(6): 1431-1445.[32]Yamada M, Hsiao Y C. The roles of peptide hormones and their receptors during plant root development[J]. Genes, 2021, 12(1): 22.[33]Kereszt A, Mergaert P, Montiel J, et al. Impact of plant peptides on symbiotic nodule development and functioning[J]. Frontiers in Plant Science, 2018, 9: 1026.[34]Batut J, Mergaert P, Masson-Boivin C. Peptide signalling in the rhizobium–legume symbiosis[J]. Current Opinion in Microbiology, 2011, 14(2): 181-187. [35]Djordjevic M A, Mohd-Radzman N A, Imin N. Small-peptide signals that control root nodule number, development, and symbiosis[J]. Journal of Experimental Botany, 2015, 66(17): 5171-5181.[36]Kumagai H, Kinoshita E, Ridge R W, et al. RNAi Knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus[J]. Plant and Cell Physiology, 2006, 47(8): 1102-1111.[37]Reid D E, Ferguson B J, Hayashi S, et al. Molecular mechanisms controlling legume autoregulation of nodulation[J]. Annals of Botany, 2011, 108(5): 789-795.[38]Ferguson B J, Indrasumunar A, Hayashi S, et al. Molecular analysis of legume nodule development and autoregulation[J]. Journal of Integrative Plant Biology, 2010, 52(1): 61-76.[39]Kinkema M, Gresshoff P M. Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK[J]. Molecular Plant Microbe Interactions, 2008, 21(10): 1337-1348.[40]Tsikou D, Yan Z, Holt D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411): 233-236.[41]Zhang C, Qi M, Zhang X, et al. Rhizobial infection triggers systemic transport of endogenous RNAs between shoots and roots in soybean[J]. Science China Life Sciences, 2020, 63(8): 1213-1226.[42]Yu L L, Wang Y W, Liu Y, et al. Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2018, 504(1): 149-156.[43]Chen Y L, Lee C Y, Cheng K T, et al. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato[J]. The Plant Cell, 2014, 26(10): 4135-4148.[44]Conrath U. Priming of induced plant defense responses[J]. Advances in Botanical Research, 2009, 51: 361-395.[45]Conrath U. Molecular aspects of defence priming[J]. Trends in Plant Science, 2011, 16(10): 524-531.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]陈锦玲,徐媛,陈玉梅,等.大豆籽粒不同发育时期的转录组分析[J].大豆科学,2019,38(04):533.[doi:10.11861/j.issn.1000-9841.2019.04.0533]
 CHEN Jin-ling,XU Yuan,CHEN Yu-mei,et al.Sequencing Analysis of Transcriptome During the Different Developmental Stages in Soybean Seed[J].Soybean Science,2019,38(03):533.[doi:10.11861/j.issn.1000-9841.2019.04.0533]
[12]刘鑫磊,薛永国,唐晓飞,等.基于转录组测序的大豆体细胞胚诱导关键基因及代谢途径分析[J].大豆科学,2022,41(05):536.[doi:10.11861/j.issn.1000-9841.2022.05.0536]
 LIU Xin-lei,XUE Yong-guo,TANG Xiao-fei,et al.Analysis of Metabolic Pathway and Genes Relating Somatic Embryo Induction Based on RNA Sequencing in Soybean[J].Soybean Science,2022,41(03):536.[doi:10.11861/j.issn.1000-9841.2022.05.0536]

备注/Memo

收稿日期:2021-02-04

基金项目:中国农业科学院基本科研业务费专项(S2021YC01);黑龙江省省院合作专项(YS20B06)。
第一作者:祁平(1994—),女,在读硕士,主要从事大豆共生固氮研究。E-mail:953376909@qq.com。
通讯作者:阎哲(1978—),男,博士,研究员,主要从事大豆共生固氮机制研究。E-mail:yanzhe@caas.cn;
邱丽娟(1963—),女,博士,研究员,主要从事作物种质资源鉴定与评价研究。E-mail:qiulijuan@caas.cn;
王俊(1981—),男,博士,教授,主要从事作物遗传育种研究。E-mail:wangjagri@yangtzeu.edu.cn。

更新日期/Last Update: 2021-07-20