[1]师立松,赵璇,付雅丽,等.大豆GAPDH家族基因生物信息学及其逆境组织表达分析[J].大豆科学,2021,40(03):299-308.[doi:10.11861/j.issn.1000-9841.2021.03.0299]
 SHI Li-song,ZHAO Xuan,FU Ya-li,et al.Bioinformatics and Tissue Expression Analysis of GAPDH Gene Family Under Abiotic Stress in Soybean[J].Soybean Science,2021,40(03):299-308.[doi:10.11861/j.issn.1000-9841.2021.03.0299]
点击复制

大豆GAPDH家族基因生物信息学及其逆境组织表达分析

参考文献/References:

[1]Sirover M A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control[J]. Biochimica et Biophysica Acta, 2011, 1810(8): 741-751.[2]Nicholls C, Li H, Liu J P. GAPDH: A common enzyme with uncommon functions[J]. Clinical Experimental Pharmacology Physiology, 2012, 39(8): 674-679. [3]Zeng L F, Deng R, Guo Z, et al. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum)[J]. BMC Genomics, 2016, 17(1): 240. [4]Tristan C, Shahani N, Sedlak T W, et al. The diverse functions of GAPDH: Views from different subcellular compartments[J]. Cellular Signaling, 2011, 23(2): 317-323. [5]Marri L, Sparla F, Pupillo P,et al. Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2013, 56(409): 73-80. [6]Howard T P, Lloyd J C, Raines C A. Inter-species variation in the oligomeric states of the higher plant calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase[J]. Journal of Experimental Botany, 2011, 62(11): 3799-3805. [7]Petersen J, Brinkmann H, Rüdiger C. Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids[J]. Journal of Molecular Evolution, 2003, 57(1): 16. [8]Wang Q, Kuo L, Sjlund R,et al. Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis thaliana[J]. Protoplasma, 1997, 198(3-4): 155-162. [9]Anoman A D, Muoz B J, Rosa T S, et al. Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis[J]. Plant Physiology, 2015, 169(3): 1619-1637. [10]Vescovi M, Zaffagnini M, Festa M,et al. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots[J]. Plant Physiology, 2013, 162(1): 333-346. [11]Mirko Z, Simona F, Alex C, et al. Plant cytoplasmic GAPDH: Redox post-translational modifications and moonlighting properties[J]. Frontiers in Plant Science, 2013, 4: 450. [12]Bustos D M, Bustamante C A, Iglesias A A. Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress[J]. Journal of Plant Physiology, 2008, 165(4): 456-461. [13]Valverde F, Ortega J M, Losada M, et al. Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus[J]. Planta, 2005, 221(6): 937-952. [14]Zhang H, Zhao Y, Zhou D X. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes[J]. Nucleic Acids Research, 2017,45(21): 12241. [15]Garcin E D. GAPDH as a model non-canonical AU-rich RNA binding protein[J]. Seminars in Cell and Developmental Biology, 2018, 86: 162-173. [16]Zheng L, Roeder R G, Luo Y. S phase activation of the histone H2B promoter by OCA-S, acoactivator complex that contains GAPDH as a key component[J]. Cell, 2003, 114(2): 255-266. [17]Colell A, Ricci J E, Tait S, et al. GAPDH and autophagy preserve survival after apoptotic cytochromec release in the absence of caspase activation[J]. Cell, 2007, 129(5): 983-997. [18]Ferreira E, Giménez R, Caas M A, et al. Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli[J]. International Journal of Biochemistry & Cell Biology, 2015, 60: 202-212.[19]Kosova A A, Khodyreva S N, Lavrik O I. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair[J]. Biochemistry, 2017, 82(6): 643-654. [20]Muoz-Bertomeu J, Cascales-Miana B, Mulet J M, et al. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis[J]. Plant Physiology, 2009, 151(2): 541-558. [21]Muoz-Bertomeu J, Cascales-Minana B, Irles-Segura A,et al. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis[J]. Plant Physiology, 2010, 152(4):1830-1841. [22]Muoz-Bertomeu J, Bermúdez M A, Segura J, et al. Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: Interaction between ABA and primary metabolism[J]. Journal of Experimental Botany, 2011, 62(3): 1229-1239.[23]Rius S P, Casati P, Iglesias A A, et al. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Molecular Biology, 2006, 61(6): 945-957.[24]Rius S P, Casati P, Iglesias A A,et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Physiology, 2008, 148(3): 1655-1667.[25]Takeda T, Fukui Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(10):1579-1586. [26]Zhang X H, Rao X L, Shi H T,et al. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice[J]. Plant Cell Tissue & Organ Culture, 2011, 107(1): 1-11. [27]Pelah D, Shoseyov O, Altman A,et al. Water-stress response in aspen (Populus tremula): Differential accumulation of dehydrin, sucrose synthase, GAPDH homologues, and soluble sugars[J]. Journal of Plant Physiology, 1997, 151(1): 96-100. [28]Miao L K, Chen C L, Yao L, et al. Genome-wide identification, characterization, interaction network and expression profile of GAPDH gene family in sweet orange (Citrus sinensis)[J]. Peer J, 2019, 7(3): e7934. [29]Schmutz J, Cannon S B, Schlueter J,et al. Erratum: Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 465(7278): 178-183. [30]姜海鹏, 田力峥, 卜凡珊, 等. 大豆胞囊线虫病抗性相关bZIP转录因子的生物信息学分析[J]. 大豆科学, 2020, 39(5): 703-711. (Jiang H P, Tian L Z, Bu F S, et al. Bioinformatics analysis of bZIP transcription factors related to resistance to soybean cyst nematode[J]. Soybean Science, 2020, 39(5): 703-711.)[31]林延慧, 唐力琼, 徐靖, 等. 大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学, 2020, 39(5): 727-733. (Lin Y H, Tang L Q, Xu J, et al. Bioinformatics analysis and interacting protein prediction of soybean bZIP gene Glyma04g04170 in response to submergence stress[J]. Soybean Science, 2020, 39(5): 727-733.) [32]Yu Y C, Wang N, Hu R B, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springerplus, 2016, 5(1): 920.[33]Du H , Yang S S , Liang Z,et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean[J]. BMC Plant Biology, 2012, 12(1):106. [34]Tien L D, Rie N, Yasuko W, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research an International Journal for Rapid Publication of Reports on Genes & Genomes, 2011, 18(4): 263-276. [35]Chen X, Chen Z, Zhao H L, et al. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments[J]. PLoS One, 2014, 9(2): e87156.[36]Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database: Towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285. [37]Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. [38]Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [39]Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [40]Zeng L F, Deng R, Guo Z P, et al. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum)[J]. BMC Genomics, 2016, 17: 240. [41]Tong J F, Walk T C, Han P P, et al. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses[J]. BMC Plant Biology, 2020, 20(1): 464. [42]Guo L, Devaiah S P, Narasimhan R, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase D to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. Plant Cell, 2012, 24(5): 2200-2212. [43]Manjunath S, Sachs M M. Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia[J]. Plant Molecular Biology, 1997, 33(1): 97-112.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2020-12-23

基金项目:河北省现代农业产业技术体系大豆产业创新团队建设项目(HBCT2019190402);河北省第二批青年拔尖人才支持计划;石家庄市科技局科学技术研究与发展计划(191490142A)。
第一作者:师立松(1996—),男,硕士,研究实习员,主要从事大豆遗传育种与分子生物学研究。E-mail:shilisongning@163.com。
通讯作者:李占军(1970—),男,硕士,研究员,主要从事大豆遗传育种与分子生物学研究。E-mail:nkylizhj@163.com;
牛宁(1980—),男,博士,副研究员,主要从事大豆遗传育种与分子生物学研究。E-mail:niuning1980@163.com。

更新日期/Last Update: 2021-07-20