ZHANG Ting,MA Li-xin,LIU Jun,et al.Soybean phyA Downstream Gene Prediction and Expression Analysis and Its Knockout Vector Construction[J].Soybean Science,2021,40(03):309-318.[doi:10.11861/j.issn.1000-9841.2021.03.0309]
大豆phyA下游基因预测和表达分析及敲除载体构建
- Title:
- Soybean phyA Downstream Gene Prediction and Expression Analysis and Its Knockout Vector Construction
- Keywords:
- Soybean; PIF3; LAF1; FHY1; FHL; Tissue expression analysis; CRISPR/Cas 9; Gene knockout vector
- 文献标志码:
- A
- 摘要:
- 为了进一步研究大豆光周期调控通路中E3和E4的下游基因,为获得其突变体植株奠定基础,以拟南芥远红光响应受体phyA下游的重要信号传递因子PIF3、LAF1、FHY1和FHL的序列作为参考序列,在Phytozome 12数据库中查找其相似序列,进行序列比对和进化树分析,确定它们在大豆中的同源基因并采用qRT-PCR方法进行组织表达分析,使用CRISPR/Cas 9系统设计同源基因的敲除靶点并通过发根系统验证靶点的有效性。结果显示:AtPIF3在大豆中有6个同源基因,AtLAF1在大豆中有4个同源基因,AtFHL在大豆中有2个同源基因,而AtFHY1在大豆中没有同源基因。4个LAF1基因主要在顶端生长点表达,6个PIF3和2个FHL基因主要在荚中表达。共鉴定出12个有效靶点,能够分别将大豆中6个PIF3、4个LAF1和2个FHL基因成功敲除。研究结果为进一步获得稳定的大豆突变体材料和大豆phyA下游基因的功能研究提供了理论基础。
- Abstract:
- To further study the downstream genes of E3 and E4 in the photoperiod regulatory pathway of soybean, and lay a foundation for obtaining its mutant soybean,we focusd on PIF3, LAF1, and FHY1/FHL, which are important signaling factors downstream of Arabidopsis far-red light receptor phyA. We used genome sequences of Arabidopsis PIF3, LAF1 and FHY1/FHL as references for searching soybean homologs in Phytozome 12 database, made sequence alignment and phylogenetic tree to analyze the homologs in soybean, and performed real-time quantitative PCR to detect the expression patterns of these soybean homologs in various tissues. We applied CRISPR/Cas 9 system to knockout these homologous genes, and verified the effectiveness of each target through the soybean hair root system. The results showed that: AtPIF3, AtLAF1, and AtFHL has six, four, and two homologs in soybean, respectively. And AtFHY1 doesn′t have homolog in soybean. Four LAF1 homologs were mainly expressed in shoot apical meristem, six PIF3 homologs and two FHL homologs were mainly expressed in pods. According to the CAISPR/Cas9 knockout results, a total of twelve effective targets were identified, which can successfully knock out six PIF3, four LAF1, and two FHL homologs in soybean. This research provides a theoretical basis for obtaining stable soybean knockout mutant, which pave a way for studying the functions of soybean phyA downstream genes.Keywords:
参考文献/References:
[1]Jiao Y L, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants[J]. Nature Reviews Genetics, 2007, 8(3): 217-230.[2]Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants[J]. Trends Plant Science, 2003, 8(4): 172-178.[3]Li J, Li G, Wang H, et al. Phytochrome signaling mechanisms[M]. Arabidopsis Book, 2011, 9: e0148. [4]Zeidler M, Zhou Q W, Sarda X, et al. The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals[J]. Plant Journal, 2004, 40(3): 355-365.[5]Genoud T, Schweizer F, Tscheuschler A, et al. FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor[J]. PLoS Genetics, 2008, 4(8): e1000143.[6]Yang S W, Jang I C, Henriques R, et al. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation[J]. Plant Cell, 2009, 21(5): 1341-1359.[7]Jang I C, Yang S W, Chua N H, et al. Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling[J]. Genes & Development, 2007,21(16): 2100-2111.[8]Shin J, Kim K, Kang H, et al. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(18): 7660-7665.[9]Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein[J]. Cell,1998,95(5): 657-667.[10]Leivar P, Quail P H. PIFs: Pivotal components in a cellular signaling hub[J]. Trends Plant Science, 2011,16(1): 19-28.[11]Xu M L, Xu Z H, Liu B H, et al. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean[J]. BMC Plant Biology, 2013,13(1): 91.[12]Xia Z J, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: E2155-E2164.[13]Liu B H, Kanazawa A, Matsumura H, et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene[J]. Genetics, 2008,180(2): 995-1007. [14]Wang J F, Zhang C M, Liu W, et al. Construction of tgw 6 mutants in rice based on CRISPR/Cas 9 technology[J]. Acta Agronomica Sinica, 2016, 42(8): 1160-1167.[15]Chen K L, Wang Y P, Zhang R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1): 667-697.[16]甘卓然, 石文茜, 黎永力, 等. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas 9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300. (Gan Z R, Shi W Q, Li Y L, et al. Identification of CRISPR/Cas 9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean[J]. Acta Agronomica Sinica, 2020, 46(8): 1291-1300.)[17]侯智红, 吴艳, 程群, 等. 利用CRISPR/Cas 9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847. (Hou Z H, Wu Y, Cheng Q, et al. Creation of high oleic acid soybean mutation plants by CRISPR/Cas 9[J]. Acta Agronomica Sinica, 2019, 45(6): 839-847.)[18]张媛媛. 光敏色素的结构及其信号调控机制[J]. 湖北农业科学, 2020, 59(4): 5. (Zhang Y Y. Structure and signal mechanism of phytochrome[J]. Hubei Agricultural Sciences,2020, 59(4):5.)[19]Quail P H. Phytochrome-interacting factors[J]. Seminars in Cell & Developmental Biology, 2000, 11(6): 457-466.[20]Pham V N, Kathare P K, Huq E. Phytochromes and phytochrome interacting factors[J]. Plant Physiology, 2018, 176(2): 1025-1038.[21]Wang H, Studer A J, Zhao Q, et al. Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1[J]. Genetics, 2015, 200(3): 965-974.[22]Castillon A, Shen H, Huq E. Phytochrome Interacting Factors: Central players in phytochrome-mediated light signaling networks[J]. Trends Plant Science,2007,12(11):514-521. [23]Jang I C, Henriques R, Chua N H. Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A[J]. Plant Cell Physiology, 2013, 54(6): 907-916. [24]Zhu H, Li C, Gao C. Publisher correction: Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nature Reviews Molecular Cell Biology, 2020, 21(11): 661-677.[25]Zhang B. CRISPR/Cas gene therapy[J]. Journal of Cellular Physiology, 2021, 236(4): 2459-2481.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2020-12-22