ZHANG Xiang,GAO Hua-wei,YANG Meng-yuan,et al.Assessment of Genetic Stability and Natural Cross Pollination for A Male Sterile-Female Fertile Mutant of Soybean[J].Soybean Science,2020,39(04):527-534.[doi:10.11861/j.issn.1000-9841.2020.04.0527]
一个大豆雄性不育雌性可育突变体的遗传稳定性及天然异交特性评价
- Title:
- Assessment of Genetic Stability and Natural Cross Pollination for A Male Sterile-Female Fertile Mutant of Soybean
- Keywords:
- Glycine max; Male sterile mutant; Recurrent selection; Genetic stability; Natural cross pollination
- 文献标志码:
- A
- 摘要:
- 为了提高大豆品种培育过程中轮回选择的效率,本研究以1个大豆雄性不育-雌性可育突变体M4~M8和M12代育性分离群体为材料,分别5年在1个地点和1年在2个地点对其育性遗传方式进行分析。同时,以该突变体天然杂交F1单株衍生的5个F2群体和3个F2衍生的F3群体为材料对育性表型遗传方式和不育株结荚数进行统计分析。结果表明:在M4~M8和M12代群体中,突变性状均为单基因控制的隐性性状;而在天然杂交组合后代群体中,育性表型的遗传因组合和播期不同而异。两个F2群体的育性表现为受单基因控制,且其衍生的F3群体育性在不同播期条件下也表现为受单基因控制;而其它3个F2群体则表现为受2个基因控制,但其中1个群体衍生的F3群体在早播条件下却表现为受单基因控制。基本农田环境下,F2群体中不育株结荚数范围为0~28个,平均2.73个。在不同遗传背景下,不同播期和年际间,不育株结荚数均差异显著。本研究结果能够为该突变体用于大豆轮回选择奠定基础。
- Abstract:
- In order to improve the efficiency of recurrent selection in soybean breeding, genetic stability of a male sterile- female fertile mutant was assessed through five years at one location in populations of M4 to M8 segregation populations and one year at two locations in M12 segregation populations derived from heterozygous mutant plants. At the same time, natural pollination and genetic characters of the mutant allele under other genetic backgrounds were measured in five F2 populations which were derived from five naturally pollinated F1 plants and three F2 derived F3 populations. F2 populations were planted in farmland with normal soil fertility in 2017, and three F3 populations were planted on three different dates in a field with poor soil fertility in 2019.The results showed that in M4-M8 and M12 populations, male sterility of this mutant was controlled by one pair of recessive alleles at Liaocheng, Shandong province through six years (from 2011 to 2015 and 2016) and one year at Jingzhou, Hubei province in 2019. In two of five F2 populations in 2017 and those derived F3 populations in 2019, the ratios of male fertility to male sterility were both 3∶1, indicating the male sterility was controlled by a pair of recessive alleles. In other three F2 populations, however, the phenotype showed a ratio of 9∶7 in 2017 indicating male fertility was controlled by two genes. In two of these three derived F3 populations in 2019 the phenotype had the same genetic characters through all the planting dates as those in 2017. However, in last one of these three derived F3 populations the male sterility was controlled by one gene when planted early, while by two genes when planted on the other two dates. In F2 populations, the pod number per male sterile plants ranged from 0 to 28 with a mean of 2.73 when planted in normal farmland in 2017. Pod number per male sterile plant varied significantly among different naturally pollinated crosses, planting dates, and years. The results in this research would set a solid foundation for soybean recurrent selection in the future.
参考文献/References:
[1]Brim C A, Burton J W. Recurrent selection in soybeans. II. Selection for increased percent protein in seeds[J]. Crop Science,1979, 19(4): 494-498.[2]Miller J E, Fehr W R. Direct and indirect recurrent selection for protein in soybeans[J]. Crop Science, 1979, 19(1): 101-106.[3]Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection[J]. Crop Science, 1998, 38(6): 1536-1540.[4]Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10): 1941-1955.[5]董全中, 杨兴勇, 张勇, 等. 轮回选择创新高蛋白质含量大豆种质资源[J]. 大豆科学,2015, 34(6): 927-932.(Dong Q Z, Yang X Y, Zhang Y, et al. Innovation of high protein content germplasm resource in soybean through recurrent selection[J]. Soybean Science,2015, 34(6): 927-932.)[6]Prohaska K R, Fehr W R. Recurrent selection for resistance to iron deficiency chlorosis in soybeans[J]. Crop Science,1981, 21(4): 524-526.[7]Lewers K S, Palmer R G. Recurrent selection in soybean[J]. Plant Breeding Reviews,1997, 15: 275-314.[8]Yang Y, Speth B D, Boonyoo N, et al. Molecular mapping of three male-sterile, female-fertile mutants and generation of a comprehensive map of all known male sterility genes in soybean[J]. Genome,2014, 57(3): 155-160.[9]Lewers K S, St Martin S K, Hedges B R, et al. Hybrid soybean seed production: Comparison of three methods[J]. Crop Science,1996, 36(6): 1560-1567.〖HJ2.5mm〗[10]赵团结, 盖钧镒. 大豆不育性自然变异的发现与鉴定[J]. 中国农业科学,2006, 39(9): 1756-1764.(Zhao T J, Gai J Y. Detection and identification of soybean natural variation of sterility[J]. Scientia Agricultura Sinica,2006, 39(9): 1756-1764.)[11]Zhao Q, Tong Y, Yang C, et al. Identification and mapping of a new soybean Male-Sterile gene, mst-M[J]. Frontiers in Plant Science,2019, 10: 94.[12]李莹, 卫保国, 王志. 三个大豆雄性不育系的发现和研究初报[J]. 华北农学报,1988, 3(1): 35-38.(Li Y, Wei B G, Wang Z. A primary report on the discovery and study of three male sterile lines[J]. Acta Agriculturae Boreali-Sinica,1988, 3(1): 35-38.)[13]张力伟, 樊颖伦, 牛腾飞, 等. 大豆“冀黄13”突变体筛选及突变体库的建立[J]. 大豆科学,2013, 32(1): 33-37.(Zhang L W, Fan Y L, Niu T F, et al. Screening of mutants and construction of mutant population for soybean cultivar ‘Jihuang 13’[J]. Soybean Science, 2013, 32(1): 33-37.)[14]李莹, 李原萍. 大豆隐性雄性不育系的应用及轮回选择[J]. 山西农业科学,1992, 30(6): 3-6.(Li Y, Li Y P. Application of recessive male sterile mutant in recurrent selection in soybean[J]. Journal of Shanxi Agricultural Sciences,1992, 30(6): 3-6.)[15]赵青松, 闫龙, 刘兵强, 等. 高产广适优质大豆品种冀豆17[J]. 大豆科学,2015, 34(4): 736-739.(Zhao Q S, Yan L, Liu B Q, et al. Breeding of high-yield widespread and high-quality soybean cultivar Jidou 17[J]. Soybean Science,2015, 34(4): 736-739.)[16]汪越胜, 盖钧镒. 中国大豆品种生态区划的修正II.各区范围及主要品种类型[J]. 应用生态学报,2002, 13(1): 71-75.(Wang Y S, Gai J Y. Study on the ecological regions of soybean in China II.Ecological environment and representative varieties[J]. Chinese Journal of Applied Ecology,2002, 13(1): 71-75.)[17]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006.(Qiu L J, Chang R Z. Discriptor and data standard for soybean[M]. Beijing: China Agriculture Press, 2006.)[18]李曙光, 赵团结, 盖钧镒. 大豆突变体NJS-1H核雄性不育性的细胞学与遗传学分析[J]. 大豆科学,2010, 29(2): 181-185.(Li S G, Zhao T J, Gai J Y. Cytological and genetical characterization of a nuclear male-sterille soybean mutant NJS-1H[J]. Soybean Science,2010, 29(2): 181-185.)[19]杜荣骞. 生物统计学[M]. 第三版. 北京: 高等教育出版社, 2010: 128.(Du R Q. Biostatistics[M]. 3th ed. Beijing: Higher Education Press, 2010: 128.)[20]SAS Institute Inc. Base SAS 9.2 procedures guide: Statistical procedures[M]. 3th ed. UAS:SAS Institute Inc., 2010.[21]Dennis L, Peacock J. Genes directing flower development in Arabidopsis[J]. Plant Cell,2019, 31(6): 1192-1193.[22]Gómez J F, Talle B, Wilson Z A. Anther and pollen development: A conserved developmental pathway[J]. Journal of Integrative Plant Biology,2015, 57(11): 876-891.[23]Wang K, Peng X, Ji Y, et al. Gene, protein, and network of male sterility in rice[J]. Frontiers in Plant Science,2013, 4: 92.[24]Yu J, Jiang M, Guo C. Crop pollen development under drought: From the phenotype to the mechanism[J]. International Journal of Molecular Sciences,2019, 20(7): 1550.[25]Stelly D M, Palmer R G. A partially male-sterile mutant line of soybeans, Glycine max (L.) Merr.: Characterization of the msp phenotype variation[J]. Euphytica,1980, 29(3): 539-546.[26]卫保国. 大豆光温敏感型雄性不育系发现初报[J]. 作物品种资源,1991(3): 12.(Wei B G. Primary research on photo-thermo sensitive mutant in soybean[J]. Crop Variety Resource,1991(3): 12.)[27]范优荣, 曹晓风, 张启发. 光温敏雄性不育水稻的研究进展[J]. 科学通报,2016, 61(35): 3822-3832.(Fan Y R, Cao X F, Zhang Q F. Progress on photoperiod thermo-sensitive genic male sterile rice[J]. Chinese Science Bulletin,2016, 61(35): 3822-3832.)[28]张勤, 金圣浩, 方芳, 等. 玉米光温敏雄性不育系cb1208-82的生理生化代谢研究[J]. 玉米科学,2019, 27(3): 48-53.(Zhang Q, Jin S H, Fang F, et al. Physiological and biochemical metabolism studies on the photo-thermo-sensitive male sterile line of maize CB1208-82[J]. Journal of Maize Sciences, 2019, 27(3): 48-53.)[29]王凯辉, 郭宝生, 刘素恩, 等. 棉花光温敏核雄性不育系育性及其杂种优势研究[J]. 河北农业科学, 2013, 17(3): 55-59.(Wang K H, Guo B S, Liu S E, et al. Study on fertility and heterosis of cotton photo-thermo sensitive genic male sterile lines[J]. Journal of Hebei Agricultural Sciences, 2013, 17(3): 55-59.)[30]葛娟, 郭英芬, 于澄宇, 等. 甘蓝型油菜光、温敏雄性不育系Huiyou50S花粉败育的细胞学观察[J]. 作物学报, 2012, 38(3): 541-548.(Ge J, Guo Y F, Yu C Y, et al. Cytological observation of anther development of photoperiod/thermo-sensitive male sterile line huiyou50S in Brassica napus[J]. Acta Agronomica Sinica,2012, 38(3): 541-548.)[31]程旭东, 孙东发, 荣德福. 新型光温敏小麦不育系337s的组织结构研究[J]. 武汉植物学研究, 2004, 21(6): 495-499.(Cheng X D, Sun D F, Rong D F. Cytological characteristics in a new material of male sterile line 337S of wheat (Triticumaestivum)[J]. Journal of Wuhan Botanical Research, 2004, 21(6): 495-499.)[32]董普辉, 何蓓如, 王宏娟, 等. 一种普通小麦光温敏不育系的发现及初步研究[J]. 中国农学通报,2009, 25(23): 215-219.(Dong P H, He B R, Wang H J, et al. Discovery and preliminary study of a photo-thermo-sensitive male sterile line in common wheat[J]. Chinese Agricultural Science Bulletin,2009, 25(23): 215-219.)[33]付庆云, 曹银萍, 李友勇. 小麦光温敏雄性不育的研究和利用进展[J]. 麦类作物学报. 2010, 30(3): 576-580.(Fu Q Y, Cao Y P, Li Y Y. Advanced on studies and applications of photo-thermo-sensitive male sterility in wheat[J]. Journal of Triticeae Crops,2010, 30(3): 576-580.)[34]江红梅, 张立平. 小麦光温敏雄性不育遗传研究进展[J]. 种子, 2009, 28(5): 56-59.(Jiang H M, Zhang L P. Advanced heredity research on photoperiod-temperature male sterility in wheat[J]. Seed, 2009, 28(5): 56-59.)[35]何瑞锋, 章志宏. 大麦光温敏雄性不育系的基本特性研究[J]. 武汉大学学报(自然科学版), 2000, 46(4): 492-494.(He R F, Zhang Z H. Studies on the basic characteristics of photo-thermo-sensitive male sterile line of barley[J]. Journal of Wuhan University (Natural Science Edition), 2000,46(4): 492-494.)[36]赵治海, 崔文生, 杜贵, 等. 谷子光(温)敏不育系821选育及其不育性与光、温关系的研究[J]. 中国农业科学, 1996, 49(5): 24-32.(Zhao Z H, Cui W S, Du G, et al. The selection of millet photo (thermo) sensitive sterile line 821 and a study on the relation of sterility to illumination and temperature[J]. Scientia Agricultura Sinica, 1996, 49(5): 24-32.)[37]丁德荣, 盖钧镒. 南方地区大豆雄性不育材料的传粉昆虫媒介及其传粉异交结实程度[J]. 大豆科学,2000, 19(1): 74-79.(Ding D R, Gai J Y. Pollinating insects and natural outcrossing amount of soybean male sterile materials in southern China[J]. Soybean Science, 2000, 19(1): 74-79.)[38]王跃强, 王曙明, 赵丽梅, 等. 杂交大豆昆虫传粉及制种技术研究进展[J]. 吉林农业科学, 2008, 33(3): 5-8.(Wang Y Q, Wang S M, Zhao L M, et al. Progress in studies of insect pollinators and seed producing techniques of soybean hybrids[J]. Journal of Jilin Agricultural Sciences,2008, 33(3): 5-8.)[39]徐环李, 杨俊伟, 孙洁茹. 我国野生传粉蜂的研究现状与保护策略[J]. 植物保护学报, 2009, 36(4): 371-376.(Xu H L, Yang J W, Sun J R. Current status on the study of wild bee-pollinators and conservation strategies in China[J]. Acta Phytophylacica Sinica, 2009, 36(4): 371-376.)[40]赵丽梅, 孙寰, 马春森, 等. 大豆昆虫传粉研究初探[J]. 大豆科学, 1999, 18(1): 74-77.(Zhao L M, Sun H, Ma C S, et al. Primary research on polination by insect in soybean[J]. Soybean Science, 1999, 18(1): 74-77.)[41]Koelling P D, Kenworthy W J, Caron D M. Pollination of male-sterile soybeans in caged plots[J]. Crop Science, 1981, 21(4): 559-561.[42]Robacker D C, Flottum P K, Sammataro D, et al. Effects of climatic and edaphic factors on soybean flowers and on the subsequent attractiveness of the plants to honey bees[J]. Field Crops Research, 1983, 6: 267-278.[43]薛运波, 葛英, 李杰銮. 大豆泌蜜习性的观察和利用[J]. 蜜蜂杂志,1998(4): 25-26.(Xue Y B, Ge Y, Li J L. Observation and utilization of honey secretion in soybean[J]. Journal of Bee,1998(4): 25-26.)[44]Graybosch R A, Palmer R G. Male sterility in soybean-An overview[J]. American Journal of Botany, 1988, 75(1): 144-156.[45]王曙明, 王跃强, 李建平, 等. 人工控制条件下大豆不育系昆虫传粉技术研究[J]. 作物杂志, 2010, 26(3): 113-117.(Wang S M, Wang Y Q, Li J P, et al. Insect-mediated cross-pollination in soybean CMS lines under artificial conditions[J]. Crops, 2010, 26(3): 113-117.)[46]Roumet P, Magnier I. Estimation of hybrid seed production and efficient pollen flow using insect pollination of male sterile soybeans in caged plots[J]. Euphytica, 1993, 70(1-2): 61-67.[47]Burton J W, Brim C A. Recurrent selection in soybeans. III. Selection for increased percent oil in seeds[J]. Crop Science, 1981, 21(1): 31-34.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]丁德荣 盖钧镒.南方地区大豆雄性不育材料的传粉昆虫媒介及其传粉异交结实程度[J].大豆科学,2000,19(01):74.[doi:10.11861/j.issn.1000-9841.2000.01.074]
Ding DerongGai Junyi.POLLINNATING INSECTS AND NATURAL OUTCROSSING AMOUNT OFSOYBEAN MALE STERILE MATERIALS IN SOUTHERN CHINA[J].Soybean Science,2000,19(04):74.[doi:10.11861/j.issn.1000-9841.2000.01.074]
[12]杨守萍 盖钧镒 徐汉卿.大豆雄性不育突变体N J89— 1的遗传学与细胞学鉴定[J].大豆科学,1998,17(01):32.[doi:10.11861/j.issn.1000-9841.1998.01.0032]
Yang ShoupingGai JunyiXu Hanqing.A GENETICAL AND CYTOMORPHOLOGICAL STUDYON THE MALE STERILEMUTANT NJ89- 1 IN SOYBEANS[J].Soybean Science,1998,17(04):32.[doi:10.11861/j.issn.1000-9841.1998.01.0032]
备注/Memo