[1]陈燕宁,吴志医,元文杰,等.核糖体基因GmRPL12对大豆低硫耐性的调控作用研究[J].大豆科学,2020,39(04):518-526.[doi:10.11861/j.issn.1000-9841.2020.04.0518]
 CHEN Yan-ning,WU Zhi-yi,YUAN Wen-jie,et al.Research on the Regulation Effect of Ribosomal Gene GmRPL12 on Low Sulfur Tolerance in Soybean[J].Soybean Science,2020,39(04):518-526.[doi:10.11861/j.issn.1000-9841.2020.04.0518]
点击复制

核糖体基因GmRPL12对大豆低硫耐性的调控作用研究

参考文献/References:

[1]Panthee D R, Pantalone V R, Sams C E, et al. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds[J]. Theoretical and Applied Genetics, 2006, 112: 546-553.[2]Kopriva S, Malagoli M, Takahashi H. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses[J]. Journal of Experimental Botany, 2019, 70(16): 4069-4073.[3]刘崇群,曹淑卿,陈国安,等. 中国南方农业中的硫[J]. 土壤学报, 1990, 27(4): 398-404. (Liu C Q, Cao S Q, Chen G A, et al. Sulphur in the agriculture of China[J]. Acta Pedologica Sinica, 1990, 27:398-404.)[4]金继运. 硫、镁和微量元素在作物营养平衡中的作用[C]. 成都:成都科技大学出版社, 1993: 249-254. (Jin J Y. The role of S, Mg and microelement of crops nutrition balance[C]. Chengdu: Chengdu Science and Technology University Press, 1993: 249-254.)[5]钱晓华, 杨平, 周学军,等. 安徽省土壤有效硫现状及时空分布[J]. 植物营养与肥料学报, 2018, 24(5): 1357-1364. (Qian X H, Yang P, Zhou X J, et al. Current situation and spatial-temporal distribution of soil available sulfur in Anhui province[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1357-1364.)[6]Zheng Z L, Leustek T. Advances in understanding sulfur utilization efficiency in plants[M]// Hossain M A, Kamiya T, Burritt D Y, et al. In plant macronutrient use efficiency molecular and genomic perspectives in crop plants. USA:Cambridge Academic Press, 2017: 215-232.[7]Ding Y, Zhou X,Zuo L, et al. Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean[J]. BMC Genomics, 2016, 17: 373.[8]Krishnana H B, Jez J M. Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed[J]. Plant Science, 2018, 272: 14-21.[9]Phartiyal P, Kim W S, Cahoon R E, et al. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment[J]. Archives of Biochemistry and Biophysics, 2006, 450: 20-29.[10]Phartiyal P, Kim W S, Cahoon R E, et al. The role of 5′-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: Molecular cloning, kinetic characterization, and gene expression[J]. Phytochemistry, 2008, 69: 356-364.[11]Chronis D, Krishnan H B. Sulfur assimilation in soybean (Glycine max [L.] Merr.): Molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase[J]. Planta, 2004, 218: 417-426.[12]Yi H,Jez J M. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family[J]. Phytochemistry, 2012, 83:15-24.[13]Zhang C,Meng Q, Zhang M, et al. Characterization of Oacetylserine (thiol) lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.] [J]. Plant Molecular Biology Reporter, 2008, 26: 277-291.[14]Chronis D, Krishnan H B. Sulfur assimilation in soybean: Molecular cloning and characterization of O-acetylserine (thiol) lyase (cysteine synthase)[J]. Crop Science, 2003, 43: 1819-1827.[15]Kim W S, Chronis D,Juergens M, et al. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds[J]. Planta, 2012, 235: 13-23.[16]Tarnowski L, Rodriguez M C, Brzywczy J, et al. Overexpression of the selective autophagy cargo receptor NBR1 modifies plant response to sulfur deficit[J]. Cells, 2020, 9: 669.[17]Hu B, Jin J,Guo A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CTmethod[J]. Methods, 2001, 25(4): 402-408.[19]Holsters M, deWaele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens[J]. Molecular and General Genetics, 1978, 163(2): 181-187. [20]Kereszt A, Li D X, Indrasumunar A, et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology[J]. Nature Protocols, 2007, 2(4): 948-952.[21]Barakat A, Szick-Miranda K, Chang I F, et al. The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome[J]. Plant Physiology, 2001, 127: 398-415.[22]Luo A, Zhan H, Zhang X, et al. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis[J]. Plant Science, 2020, 292: 110394. [23]Sha A H, Chen Y H, Shan Z H, et al. Identification of photoperiod-regulated gene in soybean and functional analysis in Nicotiana benthamiana[J]. Journal of Genetics, 2014, 93(1): 43-51.[24]Zhang J, Yuan H, Yang Y, et al. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(9): 2731-2744. [25]Lin D, Jiang Q,Zheng K, et al. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death[J]. Plant Biology, 2015, 17(3): 599-607.[26]Ludwig A,Tenhaken R. Suppression of the ribosomal L2 gene reveals a novel mechanism for stress adaptation in soybean[J]. Planta, 2001, 212(5-6): 792-798.[27]Kim K Y, Park S W, Chung Y S, et al. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean[J]. Journal of Experimental Botany, 2004, 55(399): 1153-1155.[28]Yao Y Y, Ni Z F, Du J K, et al.Isolation and characterization of 15 genes encoding ribosomal proteins in wheat (Triticum aestivum L.)[J]. Plant Science, 2006, 170(3): 579-586.[29]Dong X,Duan S, Wang H B, et al. Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana[J/OL]. Journal of Integrative Plant Biology, 2020. doi: 10.1111/jipb.12907.[30]Chu S, Wang J, Zhu, Y, et al. An R2R3-type MYB transcription factor,GmMYB29, regulates isoflavone biosynthesis in soybean[J]. PLoS Genetics, 2017, 13(5):e1006770.[31]Zhang W, Liao X, Cui Y, et al. Acation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean[J]. PLoS Genetics, 2019, 15(1): e1007798.[32]Xue Y, Xiao B, Zhu S, et al. GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean[J]. Journal of Experimental Botany, 2017, 68(17): 4951-4967.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2020-04-12
基金项目:国家自然科学基金(31671715);国家重点研发计划(2016YFD0101005)。
第一作者简介:陈燕宁(1995-),女,硕士,主要从事大豆遗传育种研究。E-mail:yanningchen_916@163.com。
通讯作者:王慧(1977-),女,博士,副教授,主要从事大豆遗传育种研究。E-mail:wanghui0@njau.edu.cn。

更新日期/Last Update: 2020-09-02