LIU Mei-ling,FENG Nai-jie,ZHENG Dian-feng,et al.Effects of Different Concentrations of Potassium Indole Butyrate on Soybean Growth Development and Physiological Metabolism at Seedlings Stage[J].Soybean Science,2021,40(02):217-223.[doi:10.11861/j.issn.1000-9841.2021.02.0217]
不同浓度吲哚丁酸钾对大豆苗期生长发育及生理代谢的影响
- Title:
- Effects of Different Concentrations of Potassium Indole Butyrate on Soybean Growth Development and Physiological Metabolism at Seedlings Stage
- Keywords:
- Soybean; Leaf; Potassium indole butyrate; Growth and development; Physiological metabolism
- 文献标志码:
- A
- 摘要:
- 为探究吲哚丁酸钾(IBA-K)对苗期大豆生长发育的影响,以大豆品种垦丰16和合丰50为试验材料,研究吲哚丁酸钾包衣剂量分别为0(CK),20,40,80,160和320 mg?kg-1时,对苗期大豆叶片生长发育及生理代谢的调控效应。结果表明:与对照相比,不同剂量IBA-K包衣处理时苗期大豆地上部形态建成、光合作用、保护酶活性及渗透调节物质含量均有不同程度的提高,除株高外,均在IBA-K浓度为80 mg?kg-1时达到最大值,且显著高于对照。垦丰16株高在IBA-K浓度为20和160 mg?kg-1时达到最大,较对照均增加了10.78%; SOD活性在IBA-K浓度为80 mg? kg-1时较其对照增加了4.81%。合丰50的株高和SOD活性在80 mg?kg-1时达到最大,较对照显著增加了27.78%和8.83%。IBA-K处理下的垦丰16和合丰50 VPD分别较对照显著降低了17.24%和23.74%、MDA含量分别较对照显著降低了38.11%和46.44%。综上分析表明,采用80 mg?kg-1IBA-K进行种子包衣处理时,对促进大豆苗期生长,提高大豆苗期的光合能力,增强大豆叶片抗氧化酶活性,降低MDA含量,提高渗透调节物质含量的效果最佳。
- Abstract:
- In order to explore the effect of potassium indole butyrate (IBA-K) on the growth development and physiological metabolism at soybean seedling stage, this study took soybean varieties Kenfeng 16 and Hefeng 50 as the experimental materials, and studied the regulatory effects of IBK-K under 0 (CK), 20, 40, 80, 160 and 320 mg?kg-1 , respectively. The results showed that, compared with the control, different doses of IBA-K coating treatment improved the morphogenesis, photosynthesis, protective enzyme activity and osmotic adjustment substance content of soybean at the seedling stage to varying degrees. Except for the plant height, all reached the maximum when the IBA-K concentration was 80 mg?kg-1, and was significantly higher than the control. The plant height of Kenfeng 16 reached the maximum when the IBA-K concentration was 20 and 160 mg?kg-1, which both increased by 10.78% compared with the control. The SOD activity of Kenfeng 16 increased by 4.81% when the IBA-K concentration was 80 mg?kg-1 compared with the control. The plant height and SOD activity of Hefeng 50 reached the maximum at 80 mg?kg-1, which was a significant increase of 27.78% and 8.83% than its control. Compared with the control, the VPD of Kenfeng 16 and Hefeng 50 under the IBA-K treatment were significantly reduced by 17.24% and 23.74%, and the MDA content was significantly reduced by 38.11% and 46.44%, respectively. The above analysis showed that when the concentration of IBA-K was 80 mg?kg-1 for seed coating treatment, it could effectively promote the growth of soybean seedlings, increase the photosynthetic capacity of soybeans, enhance the antioxidant enzyme activity of soybean leaves, reduce the MDA content, and increase the content of osmotic adjustment substances.
参考文献/References:
[1]Wang W, Wang C, Pan D, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2):196-201.[2]Wang C,Linderholm H W, Song Y, et al. Impacts of drought on maize and soybean production in northeast China during the past five decades[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2459.[3]Pathan M S, Lee J D, Shannon J G, et al. Recent advances in breeding for drought and salt stress tolerance in soybean[M]//Jenks M A, Hasegawa P M, Jain S M. ed. Advances in molecular breeding toward drought and salt tolerant crops. Springer, 2007: 739-773.[4]李秀芬, 郭昭滨, 朱海霞, 等. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响[J]. 应用生态学报, 2020, 31(4):1223-1232.(Li X F, Guo Z B, Zhu H X, et al. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1223-1232.)[5]臧紫薇, 赵雪, 李海燕, 等. 大豆种质资源苗期抗旱性评价[J]. 大豆科学, 2016, 35(6): 964-968.(Zang Z W, Zhao X, Li H Y, et al. Evaluation of drought resistance of soybean germplasm in seedling stage[J]. Soybean Science, 2016, 35(6): 964-968.)[6]李建英, 周长军, 杨柳, 等. 水分胁迫对大豆苗期叶片内源激素含量与保护酶活性的影响[J]. 大豆科学, 2010, 29(6): 959-963.(Li J Y, Zhou C J, Yang L, et al. Effect of water stress on endogenous hormone and protective enzymes in soybean seedling leaves[J]. Soybean Science, 2010, 29(6): 959-963.)[7]刘文夫, 董守坤, 徐亚会, 等. 大豆苗期干旱胁迫对糖分吸收与相关酶活性的影响[J]. 作物杂志, 2014(3): 117-120.(Liu W F, Dong S K, Xu Y H, et al. Effects of drought stress on sugar absorption and related enzyme activities at soybean seedling[J]. Crops, 2014(3): 117-120.)[8]Fan Y F, Chen J X, Cheng Y J, et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system[J].PLoS One, 2018, 13(5): e0198159.[9]Jumrani K, Bhatia V S, Pandey G P. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean[J]. Photosynthesis Research, 2017, 131(3): 333-350.[10]Minobu K. Effect of growing soybean plants under continuous light on leaf photosynthetic rate and other characteristics concerning biomass production[J]. Journal of Agronomy, 2008, 7(2): 156-162.[11]余明龙, 左官强, 李瑶, 等. 调环酸钙对盐碱胁迫下大豆幼苗光合特性和保护酶活性的调节作用[J]. 中国油料作物学报, 2019, 41(5): 741-749.(Yu M L, Zuo G Q, Li Y, et al. Effects of prohexadione-calcium on photosynthetic characteristics and protective enzyme activity of soybean seedlings under saline-alkali stress[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 741-749.)[12]Feng N J, Liu C J, Zheng D F, et al. Effect of uniconazole treatment on the drought tolerance of soybean seedlings[J]. Pakistan Journal of Botany, 2020, 52(5): 1515-1523.[13]Attarzadeh M, Balouchi H, Baziar M R. Effects of paclobutrazol’s pre-treatment on cold tolerance induction in soybean seedling (Glycine max L.)[J]. Italian Journal of Agronomy, 2018: 155-162.[14]Zou J N, Jin X J, Zhang Y X, et al. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress[J]. Photosynthetica, 2019, 57(2): 512-520.[15]齐德强, 冯乃杰, 郑殿峰, 等. 不同壮秧剂对水稻幼苗生长及生理特性的影响[J]. 核农学报, 2019, 33(8):1611-1621.(Qi D Q, Feng N J, Zheng D F, et al. Effects of different seedling strengthening agents on growth and physiological characteristics of rice seedlings[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8):1611-1621.)[16]Knight P R, Coker C H, Anderson J M, et al. Mist interval and K-IBA concentration influence rooting of orange and mountain azalea[J]. Native Plants Journal, 2005, 6(2): 111-117.[17]Griffin J J, Lasseigne F T. Effects of K-IBA on the rooting of stem cuttings of 15 taxa of snowbells (Styrax spp.)[J]. Journal of Environmental Horticulture, 2005,23(4):171-174.[18]王红, 宋涛, 刘辉, 等. 不同浓度生根剂对玉米根系生长的影响[J]. 黑龙江农业科学, 2016(2): 57-60.(Wang H, Song T, Liu H, et al. Effect of different concentrations of rooting agents on maize radicle growth[J]. Heilongjiang Agricultural Sciences, 2016(2): 57-60.)[19]Porcel R, José M B, Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence[J]. New Phytologist, 2003, 157(1): 135-143.[20]Jumrani K, Bhatia V S. Interactive effect of temperature and water stress on physiological and biochemical processes in soybean[J]. Physiology and Molecular Biology of Plants, 2019, 25(3): 667-681.[21]Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Science, 2001, 161(4): 765-771.[22]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.(Li H S. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing:Higher Education Press, 2000.)[23]Yang F,Feng L Y, Liu Q L, et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition[J]. Environmental and Experimental Botany, 2018, 150: 79-87.[24]Lopez M A, Xavier A, Rainey K M. Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr)[J]. Frontiers in Plant Science, 2019, 10: 680.[25]Wang W S, Wang C, Pan D Y, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 196-201.[26]Fan Y, Chen J, Wang Z, et al. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis[J]. BMC Plant Biology, 2019, 19(1): 34.[27]黄文婷, 冯乃杰, 郑殿峰, 等. 烯效唑和胺鲜酯对大豆叶片光合特性与碳代谢的调控效应[J]. 大豆科学, 2020, 39(2): 243-251.(Huang W T, Feng N J, Zheng D F, et al. Regulatory effects of uniconazole and diethyl hexanoate on photosynthetic characteristics and carbon metabolism of soybean leaves[J]. Soybean Science, 2020, 39(2): 243- 251.)[28]Devi M J,Taliercio E W, Sinclair T R. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits[J]. Journal of Experimental Botany, 2015, 66(7): 1845-1850.[29]Ramesh R,Ramprasad E. Effect of plant growth regulators on morphological, physiological and biochemical parameters of soybean (Glycine max L. Merrill)[J]. Biotechnology and Bioforensics, 2015: 61-71.[30]Zhang M C, He S Y, Zhan Y C, et al. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean[J].PLoS one, 2019, 14(12): e0226542.[31]Osman H S. Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycinebetaine and proline[J]. Annals of Agricultural Sciences, 2015, 60(2): 389-402.[32]Akitha Devi M K, Giridhar P. Variations in physiological response, lipid peroxidation, antioxidant enzyme activities, proline and isoflavones content in soybean varieties subjected to drought stress[J]. Proceedings of the National Academy of ences India, 2015, 85(1): 35-44.[33]Sallam A, Alqudah A M, Dawood M F A, et al. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research[J]. International Journal of Molecular Sciences, 2019, 20(13): 3137.[34]Karami S, Sanavy S A M M, Ghanehpoor S, et al. Effect of foliar zinc application on yield, physiological traits and seed vigor of two soybean cultivars under water deficit[J]. Notulae Scientia Biologicae, 2016, 8(2): 181-191.[35]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.[36]郑殿峰, 赵黎明, 冯乃杰. 植物生长调节剂对大豆叶片内源激素含量及保护酶活性的影响[J]. 作物学报, 2008,34(7): 1233-1239.(Zheng D F, Zhao L M, Feng N J. Effects of plant growth regulators (PGRs) on endogenous hormone contents and activities of protective enzymes in soybean leaves[J]. Acta Agronomica Sinica, 2008,34(7): 1233-1239.)[37]冯亚楠. 植物生长调节剂对大豆苗建成及产量品质的调控效应[D]. 大庆:黑龙江八一农垦大学, 2010.(Feng Y N. Regulatory effects of plant growth regulators on soybean seedling establishment, yield and quality[D]. Daqing:Heilongjiang Bayi Agriculture University, 2010.)[38]Nguyen T Q, Pham H B V, Le T V, et al. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory[J]. AIMS Bioengineering, 2020, 7(3): 114.[39]Kocsy G, Laurie R, Szalai G, et al. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses[J]. Physiologia Plantarum, 2005, 124(2): 227-235.[40]Mwenye O J, Van Rensburg L, Van Biljon A, et al. The role of proline and root traits on selection for drought-stress tolerance in soybeans: A review[J]. South African Journal of Plant and Soil, 2016, 33(4): 245-256.[41]Porcel R, Ruiz-Lozano J M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress[J]. Journal of Experimental Botany, 2004, 55(403): 1743-1750.[42]李爽. 干旱和高温对大豆苗期抗氧化特性的影响[D]. 哈尔滨:东北农业大学, 2018.(Li S. Effects of drought and high temperature on the antioxidative characteristics of soybean seedlings[D]. Harbin:Northeast Agricultural University, 2018.)[43]魏湜, 张翯, 顾万荣, 等. DCPTA对盐胁迫下玉米叶片渗透调节生理生化特征影响[J]. 东北农业大学学报, 2015, 46(9): 1-8.(Wei S, Zhang H, Gu W R, et al. Effect of DCPTA on the physiological and biochemical characteristics of osmotic adjustment in maize seedling leaves under salt stress[J]. Journal of Northeast Agricultural University, 2015, 46(9): 1-8.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]郑 旭. 不同浓度6-BA对大豆叶片碳代谢相关生理指标的影响[J].大豆科学,2013,32(06):858.
ZHENG Xu. Effects of Different Concentrations of 6-BA on Carbon Metabolism Related Indicators in Soybean Leaves[J].Soybean Science,2013,32(02):858.
[12]张晓可,於丙军.大豆幼苗根和叶片原生质的分离与纯化[J].大豆科学,2009,28(04):697.[doi:10.11861/j.issn.1000-9841.2009.04.0697]
ZHANG Xiao-ke,YU Bing-jun.Isolation and Purification of Protoplasts in Roots and Leaves of Soybean Seedlings[J].Soybean Science,2009,28(02):697.[doi:10.11861/j.issn.1000-9841.2009.04.0697]
[13]申晓慧,张敬涛,姜成,等.大豆叶片叶绿素含量与光谱的特征分析[J].大豆科学,2009,28(04):747.[doi:10.11861/j.issn.1000-9841.2009.04.0747]
SHEN Xiao-hui,ZHANG Jing-tao,JIANGCheng,et al.Correlation between Chlorophyll Content and Spectral Characteristics of Soybean Leaves[J].Soybean Science,2009,28(02):747.[doi:10.11861/j.issn.1000-9841.2009.04.0747]
[14]王雪,段玉玺,陈立杰.适用于大豆叶片蛋白质组分析的双向电泳最佳条件研究[J].大豆科学,2009,28(02):325.[doi:10.11861/j.issn.1000-9841.2009.02.0325]
WANG Xue,DUAN Yu-xi,CHEN Li-jie.A Two-Dimensional Electrophoresis Protocol Suitable for Proteomic Analysis of Soybean Leaves[J].Soybean Science,2009,28(02):325.[doi:10.11861/j.issn.1000-9841.2009.02.0325]
[15]张明才 李召虎 田晓莉 段留生 王保民 翟志席 何钟佩.植物生长调节剂SHK -6 对大豆叶片氮素代谢的调控效应[J].大豆科学,2004,23(01):15.[doi:10.11861/j.issn.1000-9841.2004.01.0015]
Zhang Ming cai Li Zhaohu Tian Xiaoli Duan Liusheng Wang Baomin Zhai Zhixi He Zhongpei.EFFECTOF PLANTGROWTH REGULATOR SHK-6 ONNITROGENMETABOLISM OF SOYBEAN LEAF[J].Soybean Science,2004,23(02):15.[doi:10.11861/j.issn.1000-9841.2004.01.0015]
[16]韩天富,王金陵,谭克辉,等.开花前后的光周期处理对大豆叶片蛋白质组分的影响[J].大豆科学,1995,14(02):95.[doi:10.11861/j.issn.1000-9841.1995.02.0095]
[J].Soybean Science,1995,14(02):95.[doi:10.11861/j.issn.1000-9841.1995.02.0095]
[17]阎秀峰,许守民,苗以农.大豆光合生理生态的研究——第13报 大豆叶片的光合速率和水分利用效率[J].大豆科学,1990,9(03):221.[doi:10.11861/j.issn.1000-9841.1990.03.0221]
[J].Soybean Science,1990,9(02):221.[doi:10.11861/j.issn.1000-9841.1990.03.0221]
[18]王新欣,赵晶晶,冯乃杰,等.低温胁迫对大豆花期不同冠层叶片生理活性及产量的影响[J].大豆科学,2020,39(02):252.[doi:10.11861/j.issn.1000-9841.2020.02.0252]
WANG Xin-xin,ZHAO Jing-jing,FENG Nai-jie,et al.Effects of Low Temperature Stress on Physiological Activity and Yield of Different Soybean Canopy Leaves of Flowering Stage[J].Soybean Science,2020,39(02):252.[doi:10.11861/j.issn.1000-9841.2020.02.0252]
[19]王象然,张大勇,郑伟,等.代表性春大豆种质资源叶片蔗糖含量全基因组关联分析[J].大豆科学,2024,43(01):13.[doi:10.11861/j.issn.10009841.2024.01.0013]
备注/Memo
收稿日期:2020-10-25