HOU Peng-hao,YANG Wan-ming,DU Wei-jun,et al.Effects of Different Degree Salt Stress on Biomass and Physiological Indexes of Soybean Seedling[J].Soybean Science,2020,39(03):422-430.[doi:10.11861/j.issn.1000-9841.2020.03.0422]
不同程度盐胁迫对大豆苗期生物量及生理指标的影响
- Title:
- Effects of Different Degree Salt Stress on Biomass and Physiological Indexes of Soybean Seedling
- Keywords:
- Soybean; Salt stress; Plant biomass; Ion content
- 文献标志码:
- A
- 摘要:
- 为研究大豆在不同程度盐胁迫下的耐盐规律,并探讨盐胁迫下影响植株生长的主要生理原因,以4份不同耐盐性大豆品种为供试材料,采用营养液水培法,用不同浓度NaCl溶液处理,测定苗期大豆植株生长指标、叶片SPAD、各部位Na+、K+、Cl-含量并进行规律分析。结果表明:(1)植株地上部鲜重和干重及地下部鲜重随盐溶液浓度的升高先增大后减少,在200 mmol?L-1高浓度盐胁迫下均显著低于对照,植株地下部干重在盐胁迫下变化未达显著水平。耐盐性品种在高浓度盐胁迫下植株生物积累量受抑制程度较低。高浓度盐胁迫显著降低了植株叶片SPAD,进而影响其光合作用,抑制植株生物量的积累。(2)植株根茎叶中Na+和Cl-含量随盐溶液浓度升高而增加,根中Na+和Cl-的积累较茎和叶对盐胁迫更敏感,耐盐性品种在盐胁迫下根中Cl-积累较少,茎叶中Na+积累较多。植株根茎中K+含量随盐溶液浓度的升高而减少,叶片中的K+含量在盐溶液处理下变化未达显著水平。(3)除耐盐品种晋大73外,其它品种在盐胁迫下植株茎叶中Na+和Cl-含量与植株生物量呈显著负相关,所有品种植株叶片中Na+和Cl-的含量与叶片SPAD呈显著负相关,表明盐害离子的积累是造成植株生物量减少、叶片失绿的重要原因。耐盐品种植株茎叶中Na+和Cl-含量与植株生物量相关性不显著,表明盐害离子对耐盐品种植株生物积累量影响不明显。
- Abstract:
- In order to study the trent of salt tolerance of soybean under different salt stress, and to explore the main physiological reasons that affecting plant growth under salt stress, we used the methods of nutrient hydroponic culture and different concentration of NaCl solution to determine the traits of four soybean varieties with different salt tolerance at seedling stage. The plant growth index, SPAD of leaves, Na+, K+ and Cl- content of each part were tested. Results showed that: (1) The fresh and dry weight of the aboveground part and the fresh weight of the underground part of the plant increased firstly and then decreased with the increasing of salt solution concentration and it was significantly lower than the control group under high concentration salt stress of 200 mmol?L-1, but the dry weight of underground part of the plant did not change significantly under salt stress. The plant biomass of salt-tolerant varieties were inhibited to a lesser extent under high salt stress. High concentration salt stress significantly reduced the SPAD of plant leaves, thus affecting photosynthesis and inhibiting the accumulation of plant biomass. (2) The contents of Na+ and Cl- in roots, stems and leaves of plants increased with the increasing of salt solution concentration, and the accumulation of Na+ and Cl- in roots was more sensitive to salt stress than in stems and leaves, for salt tolerant varieties, the accumulation of Cl- in roots was less and Na+ in stems and leaves was more under salt stress. The K+ contents in roots and stems decreased with the increasing of salt solution concentration, while the K+ contents in leaves did not change significantly under salt solution treatment. (3)The contents of Na+ and Cl- in the stems and leaves of plants under salt stress was negatively correlated with the plant biomass in all varieties except the salt-tolerant variety Jinda 73, and the contents of Na+ and Cl- in leaves of all varieties were negatively correlated with the SPAD of leaves. This results showed that the accumulation of salt ions was an important reason for the decrease of plant biomass and leaf green loss. There was no significant correlation between the contents of Na+ and Cl- in the stems and leaves of salt-tolerant cultivars and the plant biomass, indicating that the effect of salt-damaged ions on the plant biomass of salt-tolerant cultivars was not significant.
参考文献/References:
[1]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报, 2008, 45(5): 837-845. (Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologia Snica, 2008, 45(5): 837-845.)[2]潘晶,黄翠华,罗君,等.盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J].地球科学进展, 2018,33(4): 361-372.(Pan J, Huang C H, Luo J, et al. Effects of salt stress on plant and the mechanism of Arbuscular Mycorrhizal Fungi enhancing salt tolerance of plants[J]. Advances in Earth Science, 2018, 33(4): 361-372.)[3]刘春卿,杨劲松,陈德明,等.不同耐盐性作物对盐胁迫的响应研究[J].土壤学报,2005, 42(6): 993-998. (Liu C Q, Yang J S, Chen D M, et al. Responses to salt stress of crops different in salt tolerance[J]. Acta Pedologia Snica, 2005, 42(6): 993-998.)[4]Chaudhary J, PatilG B, Sonah H, et al. Expanding omics resources for improvement of soybean seed composition traits[J]. Frontiers in Plant Science, 2015, 6(1021): 1-16.[5]Asraf M, Wu L. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(1): 17-42.[6]牛远,杨修艳,戴存凤,等.大豆芽期和苗期耐盐性评价指标筛选[J].大豆科学,2018, 37(2): 215-223. (Niu Y, Yang X Y, Dai C F, et al. Related indices selection of soybean salt tolerance at germination and seedling stages[J]. Soybean Science, 2018, 37(2): 215-223.)[7]罗庆云, 於丙军, 刘友良. 大豆苗期耐盐性鉴定指标的检验[J]. 大豆科学, 2001, 20(3): 177-182. (Luo Q Y, Yu B J, Liu Y L. Effect of NaCl on the growth, K+, Na+and Cl- distribution in seedlings of 6 soybean cultivars (Glycine max L. Merrill)[J]. Soybean Science, 2001,20(3): 177-182.)[8]刘玉兰, 陈殿元, 元明浩, 等. 盐胁迫对小粒大豆幼苗生长发育及光合特性的影响[J]. 大豆科学, 2017, 36(6): 913-920. (Liu Y L, Chen D Y, Yuan M H, et al. Effects of salt stress on seedling growth and photosynthetic characteristics of Glycine gracilis[J].Soybean Science, 2017, 36(6): 913-920.)[9]於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报,2001, 27(6): 776-780. (Yu B J, Luo Q Y, Liu Y L. Effects of salt stress on growth and ionic distribution of salt-born Glycine soja[J]. Acta Agronomica Sinica, 2001, 27(6): 776-780.)[10]姜静涵,关荣霞,郭勇,等.大豆苗期耐盐性的简便鉴定方法[J].作物学报,2013, 39(7): 1248-1256. (Jiang J H, Guan R X, Guo Y, et al. Simple evaluation method of tolerance to salt at seedling stage in soybean[J]. Acta Agronomica Sinica,2013, 39(7): 1248-1256.)[11]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯,1995, 31(1): 50-52. (Wang B S, Zhao K F. Comparison of extractive methods of Na and K in wheat leaves[J].Plant Physiology Communications, 1995, 31(1): 50-52.)[12]雷启福,周春山,高艺,等. AgCl溶胶比浊法测定烟草中的微量氯[J].光谱实验室,2004, 21(5): 931-935.(Lei Q F, Zhou C S, Gao Y, et al. Determination of trace chlorine in tobacco by AgCl turbidimetry[J]. Chinese Journal of Spectroscopy Laboratory,2004, 21(5): 931-935.)[13]周强,李萍,曹金花,等.测定植物体内氯离子含量的滴定法和分光光度法比较[J].植物生理学通讯,2007, 43(6): 1163-1166. (Zhou Q, Li P, Cao J H, et al.Comparison on titration and spectrophotometric methods for determination of chloride content in plants[J]. Plant Physiology Communications, 2007, 43(6): 1163-1166.)[14]郭敏,王楠,付畅.植物根系耐盐机制的研究进展[J].生物技术通报,2012(6): 7-12. (Guo M, Wang N, Fu C, et al.Progress of studies on salt tolerance mechanisms in plant root system under salt stress[J]. Biotechnology Bulletin,2012(6): 7-12.[15]Merchan F, De L L, Rizzo S G, et al. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula[J]. The Plant Journal, 2007, 51(1): 1-17.[16]王俊娟,王德龙,樊伟莉,等.陆地棉萌发至三叶期不同生育阶段耐盐特性[J].生态学报,2011, 31(13): 3720-3727. (Wang J J, Wang D L, Fan W L, et al. The characters of salt-tolerance at different growth stages in cotton[J]. Acta Ecologica Sinica,2011, 31(13): 3720-3727.)[17]Strogonov B P. Physiological basis of salt tolerance of plants[J]. Soil Science, 1965, 99(5): 356.[18]Fromme P, Melkozernv A, Jordan P, et al. Structure and function of photosystem I: Interaction with its soluble electron carriers and external antenna systems[J]. FEBS Letters, 2003, 555(1): 40-44.[19]Hamwieh A, Xu D. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans[J]. Breeding Science, 2008, 58(4): 355-359.[20]Apse M P, Blumwald E. Na+ transport in plants[J]. FEBS Letters, 2007, 581(12): 2247-2254.[21]Naidoo G. Growth, water and ion relationships in the coastal halophytes Triglochin bulbosa and T. striata[J]. Environmental and Experimental Botany, 1994, 34(4): 419-426.[22]左照江,张汝民,高岩.盐胁迫下植物细胞离子流变化的研究进展[J].浙江农林大学学报,2014, 31(5): 805-811. (Zuo Z J, Zhang R M, Gao Y. Advances in plant cell ion flux with salt stress: A review[J]. Journal of Zhejiang A & F University, 2014, 31(5): 805-811.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]陈 昀,郑焕明,张 竞,等.以hemin为基础的物质联用缓解盐胁迫对大豆种子萌发的抑制[J].大豆科学,2013,32(05):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
CHEN Yun,ZHENG Huan-ming,ZHANG Jing,et al.Hemin-based Combinations of Exogenous Substances Alleviate the Inhibition of Soybean Seed Germination under Salt Stress[J].Soybean Science,2013,32(03):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
[12]马淑英 尹田夫 袁鹰 刘德璞 刘艳芝.盐胁迫对大豆发育子叶愈伤组织的生化影响[J].大豆科学,1997,16(03):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
Ma ShuyingYin Tanfu Yua n YingLiu DepuLiu Ya nzhing.EFFECT OF SALT STRESS ON SOYBEAN COTYLEDON CALLUSTISSUE DEVELOPMENT[J].Soybean Science,1997,16(03):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
[13]常汝镇,陈一舞,邵桂花,等.盐对大豆农艺性状及籽粒品质的影响[J].大豆科学,1994,13(02):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
[J].Soybean Science,1994,13(03):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
[14]徐芬芬,楚婕妤,刘誉,等.盐胁迫对大豆种子萌发过程中吸水和水解酶活性的影响[J].大豆科学,2017,36(01):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
XU Fen-fen,CHU Jie-yu,LIU Yu,et al.Effects of Salt Stress on Water Uptake and Hydrolytic Enzyme Activities During Soybean Seed Germination[J].Soybean Science,2017,36(03):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
[15]王玉斌,刘薇,张彦威,等.乙烯对大豆幼苗盐胁迫响应的调控机制研究[J].大豆科学,2022,41(05):580.[doi:10.11861/j.issn.1000-9841.2022.05.0580]
WANG Yu-bin,LIU Wei,ZHANG Yan-wei,et al.Regulation Mechanism in Soybean Seedling Response to Salt Stress of Ethylene[J].Soybean Science,2022,41(03):580.[doi:10.11861/j.issn.1000-9841.2022.05.0580]
[16]王玉斌,张志贤,张辰淼,等.大豆盐胁迫响应NRT基因的鉴定及GmNRT1.5A的克隆和表达分析[J].大豆科学,2023,42(06):674.[doi:10.11861/j.issn.1000-9841.2023.06.0674]
[17]邹平,杨霞,于喆妍,等.不同种类海藻多糖对盐胁迫下大豆幼苗的促进作用[J].大豆科学,2024,43(01):73.[doi:10.11861/j.issn.10009841.2024.01.0073]
[18]何芳蕾,李兰馨,卢秋连,等.大豆磷脂酶D家族基因全基因组鉴定及耐盐性分析[J].大豆科学,2024,43(06):695.[doi:10.11861/j.issn.1000-9841.2024.06.0695]
备注/Memo