[1]王玉斌,刘薇,张彦威,等.乙烯对大豆幼苗盐胁迫响应的调控机制研究[J].大豆科学,2022,41(05):580-587.[doi:10.11861/j.issn.1000-9841.2022.05.0580]
 WANG Yu-bin,LIU Wei,ZHANG Yan-wei,et al.Regulation Mechanism in Soybean Seedling Response to Salt Stress of Ethylene[J].Soybean Science,2022,41(05):580-587.[doi:10.11861/j.issn.1000-9841.2022.05.0580]
点击复制

乙烯对大豆幼苗盐胁迫响应的调控机制研究

参考文献/References:

[1]XU Z L, ALI Z, XU L, et al. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean[J]. Scientific Reports, 2016, 6: 20366.[2]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. [3]YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217: 523-539.[4]张红, 董树亭. 玉米对盐胁迫的生理响应及抗盐策略研究进展[J]. 玉米科学, 2011, 19(1): 64-69. (ZHANG H, DONG S T. Research progress on the physiological and biochemistry responses of salt tolerance and strategies of salt resistance in maize[J]. Maize Science, 2011, 19(1): 64-69.)[5]SHABALA S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of Botany, 2013, 112(7): 1209-1221. [6]VAN Z E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.[7]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. [8]CAO W H, LIU J, HE X J, et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiology, 2007, 143(2): 707-719.[9]OLSON D C, WHITE J A, EDELMAN L, et al. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(12): 5340-5344. [10]QI J S, SONG C P, WANG B S, et al. Reactive oxygen species signalingand stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 2018, 60(9): 805-826.[11]MA L Y, ZHANG H, SUN L R, et al. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress[J]. Journal of Experiment Botany, 2012, 63(1): 305-317. [12]PENG J Y, LI Z H, WEN X, et al. Salt induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genetics, 2014, 10(10):e1004664.[13]JIANG C F, BELFIELD E J, CAO Y, et al. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis[J]. Plant Cell, 2013, 25(9): 3535-3552.[14]LI C H, WANG G, ZHAO J H, et al. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice[J]. Plant Cell, 2014, 26(6): 2538-2553. [15]CHANG C S, Wang B L, SHI L, et al. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate[J]. Journal of Plant Physiology, 2010, 167(14): 1152-1156. [16]张彦威, 刘国峰, 李伟, 等. 黄淮海地区大豆种质资源耐盐性鉴定[J]. 山东农业科学, 2018, 50(11): 33-36. (ZHAO Y W, LIU G F, LI W, et al. Identification on salt tolerance of soybean germplasms in Huang-Huai-Hai region[J]. Shandong Agricultural Sciences, 2018, 50(11): 33-36.)[17]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method[J]. Methods, 2001, 25(4): 402-408.[18]赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10):1-10. (ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress[J]. Biotechnology Bulletin, 2016,32(10):1-10.)[19]YANG C, MA B, HE S J, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165.[20]LIANG X, ABEL S, KELLER J A, et al. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1992, 89(22): 11046-11050. [21]刘友良,毛才良,汪良驹. 植物耐盐性研究进展[J]. 植物生理学通讯, 1987, 38(4): 1-7. (LIU Y L, MAO C L, WANG L J. Recent progress in studies on salinity tolerance in plants[J]. Plant Physiology Communications, 1987, 38(4): 1-7.)[22]谢崇波, 金谷雷, 徐海明, 等. 拟南芥在盐胁迫环境下 SOS 转录调控网络的构建及分析[J]. 遗传, 2010, 32(6): 639-646. (XIE C B, JIN G L, XU H M, et al. Construction and analysis of SOS pathway-related transcriptional regulatory network underlying salt stress response in Arabidopsis[J]. Hereditas, 2010,32(6): 639-646.)[23]SZABADOS L, SAVOURE A. Proline:A multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97. [24]REJEB K B, ABDELLY C, SAVOURE A. How reactive oxygen species and proline face stress together[J]. Plant Physiology, 2014, 80: 278-284.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]陈 昀,郑焕明,张 竞,等.以hemin为基础的物质联用缓解盐胁迫对大豆种子萌发的抑制[J].大豆科学,2013,32(05):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
 CHEN Yun,ZHENG Huan-ming,ZHANG Jing,et al.Hemin-based Combinations of Exogenous Substances Alleviate the Inhibition of Soybean Seed Germination under Salt Stress[J].Soybean Science,2013,32(05):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
[12]马淑英 尹田夫 袁鹰 刘德璞 刘艳芝.盐胁迫对大豆发育子叶愈伤组织的生化影响[J].大豆科学,1997,16(03):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
 Ma ShuyingYin Tanfu Yua n YingLiu DepuLiu Ya nzhing.EFFECT OF SALT STRESS ON SOYBEAN COTYLEDON CALLUSTISSUE DEVELOPMENT[J].Soybean Science,1997,16(05):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
[13]常汝镇,陈一舞,邵桂花,等.盐对大豆农艺性状及籽粒品质的影响[J].大豆科学,1994,13(02):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
 [J].Soybean Science,1994,13(05):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
[14]徐芬芬,楚婕妤,刘誉,等.盐胁迫对大豆种子萌发过程中吸水和水解酶活性的影响[J].大豆科学,2017,36(01):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
 XU Fen-fen,CHU Jie-yu,LIU Yu,et al.Effects of Salt Stress on Water Uptake and Hydrolytic Enzyme Activities During Soybean Seed Germination[J].Soybean Science,2017,36(05):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
[15]侯鹏浩,杨万明,杜维俊,等.不同程度盐胁迫对大豆苗期生物量及生理指标的影响[J].大豆科学,2020,39(03):422.[doi:10.11861/j.issn.1000-9841.2020.03.0422]
 HOU Peng-hao,YANG Wan-ming,DU Wei-jun,et al.Effects of Different Degree Salt Stress on Biomass and Physiological Indexes of Soybean Seedling[J].Soybean Science,2020,39(05):422.[doi:10.11861/j.issn.1000-9841.2020.03.0422]

备注/Memo

收稿日期:2022-02-03

基金项目:山东省农业良种工程(2019LZGC004);山东省农业科学院科技创新工程(CXGC2021B08)。
第一作者:王玉斌(1988—),博士,助理研究员,主要从事大豆耐逆基因功能研究。E-mail:wangyb_221@163.com。
通讯作者:张礼凤(1972—),女,研究员,主要从事大豆耐逆基因挖掘研究。E-mail:zhanglifeng9639@sina.com。

更新日期/Last Update: 2022-09-30