SU Dai-qun,ZHANG Kai-xin,LI Wen-xia,et al.QTL Analysis of Morphological and Yield-Related Traits of Soybean under Different Nitrogen Levels[J].Soybean Science,2020,39(02):198-204.[doi:10.11861/j.issn.1000-9841.2020.02.0198]
不同施氮条件下大豆形态与产量相关性状的QTL分析
- Title:
- QTL Analysis of Morphological and Yield-Related Traits of Soybean under Different Nitrogen Levels
- 文献标志码:
- A
- 摘要:
- 大豆形态与产量相关性状是重要的育种目标,对于不同施氮条件有不同的生态类型。为明确不同氮肥水平下大豆形态与产量相关性状的QTL遗传基础,本研究利用由大豆杂交组合东农L13×合农60的RIL群体(156个株系)为遗传材料,在3个不同地点采用正常施氮与不施氮处理,利用株高、主茎节数、单株荚数、单株粒数、百粒重和单株粒重进行QTL定位。结果表明:两亲本在各个性状上存在显著差异,RIL群体符合正态分布,满足数量性状遗传特征,QTL分析共检测到71个调控相关性状的 QTL,解释了3.88%~41.12%的表型变异。有6个QTL可在正常施氮肥和不施用氮肥条件下检测到,有29个QTL可在不施氮肥条件下检测到,42个QTL可在施氮肥条件下检测到。检测到调控相关性状的QTL中有45个是本研究新发现的。研究结果将为大豆氮肥适应生态类型的分子育种提供理论基础和技术支撑。
- Abstract:
- Soybean morphology and yield-related traits are important breeding targets. The corresponding ecological genotypes are suitable to specific nitrogen usage condition. In order to clarify the genetic basis of morphological and yield-related traits under different nitrogen levels, the 156 RILs derived from cross Dong L13 × Henong 60 were planted under normal and zero nitrogen usage in three environments. And we analyzed the QTL controlling the plant height, number of nod of main stem, number of pods per plant, number of seeds per plant, 100-seed weight, and seed weight per plant. The results showed that there were significant differences between the two parents in each trait, and each trait of RIL population followed normal distribution with the genetic characteristics of quantitative traits. A total of 71 QTLs were detected by QTL analysis, which explained the phenotypic variation of 3.88%-41.12%. Six QTLs were detected under normal and no nitrogen application, 29 QTLs were detected under non-nitrogen application, and 42 QTLs were detected under nitrogen application. In this study, 45 QTLs of the detected regulatory traits were newly discovered. The results of the present research would provide theoretical and technological support for molecular breeding on nitrogen ecotype in soybean.
参考文献/References:
[1]丁洪, 郭庆元. 氮肥对不同品种大豆氮积累和产量品质的影响[J]. 土壤通报, 1995, 26(1): 18-21. (Ding H, Guo Q Y, Nitrogen fertilizer on the influence of different varieties soybean nitrogen accumulation and production quality[J]. Chinese Journal of Soil Science, 1995, 26(1): 18-21.)[2]管宇, 刘丽君, 董守坤, 等. 施氮对大豆植株氮素和蛋白质含量的影响[J]. 东北农业大学学报, 2009, 40 (7): 1-4. (Guan Y, Liu L J, Dong S K, et al. Effect of nitrogen application on nitrogen content and protein content in soybean[J]. Journal of Northeast Agricultural University, 2009, 40(7): 1-4.)[3]贾珂珂, 章建新, 买苏提〖DK1〗?买买提江. 施氮量对超高产大豆中黄35花荚形成及产量的影响[J]. 新疆农业大学学报, 2014, 37(4): 311-316. (Jia K K, Zhang J X, Maisuti M M T J. Effects of nitrogen fertilizer on formation of flowers and pods and output of zhonghuang 35 super-high yield soybean[J]. Journal of Xinjiang Agricultural University, 2014, 37(4): 311-316.)[4]杜晶, 李文霞, 董全中, 等. 大豆荚数垂直分布的遗传分析与QTL定位[J]. 大豆科学, 2019, 38(3): 360-370. (Du J, Li W X, Dong Q Z, et al. Genetic analysis and QTL mapping on vertical distribution of pod number in soybean[J]. Soybean Science, 2019, 38(3): 360-370.)[5]李灿东, 蒋洪蔚, 张闻博, 等. 大豆荚粒相关性状的QTL分析[J]. 分子植物育种, 2008, 6(6): 1091-1100. (Li C, Jiang H W, Zhang W B, et al. QTL analysis of seed and pod traits in soybean[J]. Molecular Plant Breeding, 2008, 6(6):1091-1100.)[6]杨玉花, 白志元, 张瑞军, 等. 大豆单株荚数QTL定位及整合[J]. 华北农学报, 2019, 3 4 (4): 90-95.(Yang Y H, Bai Z Y, Zhang R J, et al. QTL mapping and integration for pod number per plant in soybean[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 90 -95.)[7]姚丹, 王丕武, 张君, 等. 大豆主要产量性状QTL定位分析[J]. 华南农业大学学报, 2014, 35(3): 41-46. (Yao D, Wang P W, Zhang J, et al.A QTL mapping analysis of main yield traits in soybean[J]. Journal of South China Agricultural University, 2014, 35(3): 41-46.)[8]Liu Y, Li Y, Reif J, et al. Identification of quantitative traitloci underlying plant height and seed weight in soybean[J]. Plant Genome, 2013, 6(3): 841-856. [9]Wang W, Li X, Chen S, et al. Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.)[J]. Euphytica, 2015, 208(1): 1-11.[10]陈强, 闫龙, 冯燕, 等. 大豆百粒重QTL定位及多样性评价[J]. 中国农业科学, 2016, 49(9):1646-1656. (Chen Q, Yan L, Feng Y, et al. Identify QTL associated with soybean 100-seed weight using recombinant inbred lines and determine QTL diversity within nature population[J]. Scientia Agricultura Sinica, 2016,49(9):1646-1656.)[11]袁宝祺.大豆产量相关性状的QTL分析[D]. 沈阳: 沈阳农业大学, 2018.(Yuan B Q. QTL mapping of important yield traits in soybean population[D]. Shenyang: Shenyang Agricultural University, 2018.)[12]于博. 大豆株型有关性状的QTL定位分析[D]. 南京: 南京农业大学, 2014. (Yu B. Mapping QTL for some plant type related traits in soybean[D]. Nanjing:Nanjing Agricultural University, 2018.)[13]位艳丽. 大豆农艺和品质性状遗传模型分析与QTL定位[D].郑州: 河南农业大学, 2011.(Wei Y L. Genetic model analysis and QTL mapping of agronomic and quality traits in soybean[D]. Zhengzhou: Henan Agricultural University, 2011.)[14]Ning H, Yuan J, Dong Q, et al. Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri][J]. PLoS One, 2018,13(4): e0195830.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]申晓慧.不同氮肥施用量对大豆根际土壤微生物数量及产量的影响[J].大豆科学,2014,33(02):284.[doi:10.11861/j.issn.1000-9841.2014.02.0284]
SHEN Xiao-hui.Effect of Nitrogen Amount on Rhizosphere Soil Microorganisms and Yield of Soybean[J].Soybean Science,2014,33(02):284.[doi:10.11861/j.issn.1000-9841.2014.02.0284]
[12]王政,高瑞凤,李文香,等.氮磷钾肥配施对大豆干物质积累及产量的影响[J].大豆科学,2008,27(04):588.[doi:10.11861/j.issn.1000-9841.2008.04.0588]
WANG Zheng,GAO Rui-feng,LI Wen-xiang,et al.Effect of Nitrogen,Phosphorus and Potassium Fertilizer Combined Application on Dry Matter Accumulation and Yield of Soybean[J].Soybean Science,2008,27(02):588.[doi:10.11861/j.issn.1000-9841.2008.04.0588]
[13]王瑞珍,程春明,吴问胜,等.赣豆5号高产栽培技术研究[J].大豆科学,2007,26(06):975.[doi:10.3969/j.issn.1000-9841.2007.06.035]
WANG Rui-zhen,CHENG Chun-ming,WU Wen-sheng,et al.HIGH-YIELD CULTIVATION PRACTICES FOR SOYBEAN GANDOU 5[J].Soybean Science,2007,26(02):975.[doi:10.3969/j.issn.1000-9841.2007.06.035]
[14]裴宇峰,韩晓增,** 祖 伟 孙聪姝 刘丽君.水氮耦合对大豆生长发育的影响*Ⅰ. 水氮耦合对大豆产量和品质的影响[J].大豆科学,2005,24(02):106.[doi:10.11861/j.issn.1000-9841.2005.02.0106]
Pei Yufeng Han Xiaozeng ** Zu Wei Sun Congshu Liu Lijun.EFFECT OF WATER AND NITROGEN FERTILIZER COUPLINGONGROWTH AND DEVELOP OF SOYBEANⅠ.Effect of Water and Nitrogen Fertilizer Coupling onYield and Quality of Soybean[J].Soybean Science,2005,24(02):106.[doi:10.11861/j.issn.1000-9841.2005.02.0106]
[15]王光华 金剑 潘相文 周克琴 刘晓冰.不同氮肥对大豆根圈土壤酶活性和氮营养分布的影响[J].大豆科学,2003,22(03):213.[doi:10.11861/j.issn.1000-9841.2003.03.0213]
Wang Guanghua Jin Jian Pan Xiangw en Zhou Keqin Liu Xiaobing.FEECTOF DIFFERENT N FERTILIZERS ON SOIL ENZYME ACTIVITY ANDN NUTRITION DISTRIDUTION ACROSS SOYBEAN RHIZOSPHERE[J].Soybean Science,2003,22(02):213.[doi:10.11861/j.issn.1000-9841.2003.03.0213]
备注/Memo
收稿日期:2020-01-09