WANG Shuai,ZHANG Zi-xu,ZHAO Hong-kun,et al.Phytophthora sojae Root Rot Resistance QTL Integration and Meta-analysis[J].Soybean Science,2019,38(06):898-905.[doi:10.11861/j.issn.1000-9841.2019.06.0898]
大豆疫霉根腐病抗性QTL的整合及Meta分析
- Title:
- Phytophthora sojae Root Rot Resistance QTL Integration and Meta-analysis
- Keywords:
- Soybean; Phytophthora sojae root rot; QTL; Meta analysis
- 摘要:
- 为根据新进研究结果进一步查找大豆疫霉根腐病相关QTL,收集2000-2018年国内外文献报道的74个有关大豆疫霉根腐病相关的QTL,利用Biomercator 2.1 软件的映射功能,根据齐序函数计算共有标记的间距,按比例在参考图谱soymap2上标注出来,通过对映射后的一致性图谱进行Meta分析,得到12个与大豆疫霉根腐病抗性相关“真实”QTL,分布在D1b、C2、A2、F、E、G 6个连锁群上,平均置信区间由原始图谱的15.1 cM降低到4.18 cM。其中有5个“真实”QTL图距小于1 cM的,最小的图距仅有 0.10 cM,为QTL进一步精细定位提供重要的依据,为大豆疫霉根腐病的分子辅助育种提供理论基础。
- Abstract:
- In order to further search QTLs related to Phytophthora sojae root rot according to the new research results. The study collected 74 QTLs related to Phytophthora sojae in the papers of domestic and abroad between 2000 and 2018 year. Using the mapping function of Biomercator 2.1 software, the common label was calculated according to the order function. The spacing was scaled out on the reference map soymap2. Through the Meta-analysis of the mapped consensus map, 12 ‘real’ QTLs related to Phytophthora root rot resistance were obtained, which were distributed on 6 linkage groups such as D1b, C2, A2, F, E and G. The average confidence interval was reduced from 15.1 cM of the original map to 4.18 cM. Among them, 5 ‘real’ QTL maps were less than 1 cM, and the minimum map distance was only 0.10 cM, which would provide an important basis for further fine mapping of QTL, and provide a theoretical basis for marker-assisted breeding of soybean resistant to Phytophthora root rot.
参考文献/References:
[1]刘世名, 李魏, 戴良英. 大豆疫霉根腐病抗性研究进展[J]. 大豆科学, 2016, 35(2):320-329.(Liu S M, Li W, Dai L Y. Advances in research on resistance to Phytophthora root rot in soybean[J]. Soybean Science, 2016, 35(2): 320-329.)[2]Takuma S, Masayasu K, Shinya Y, et al. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans[J]. Breeding Science, 2012, 61(5):511-522.[3]Burnham K D, Dorrance A E, Vantoai T T, et al. Quantitative trait loci for partial resistance to in soybean[J]. Crop Science, 2003, 43(5):673-675.[4]韩英鹏, 李文滨, Yu K F,et al. 耐大豆疫霉根腐病QTL定位的研究[J]. 大豆科学, 2006, 25(1):23-27.(Han Y P, Li Wen B, Yu K F, et al. Study on QTL mapping of Phytophthora root toxin resistance in soybean[J]. Soybean Science, 2006, 25(1): 23-27.)[5]卢双勇, 韩英鹏, 滕卫丽, 等. 大豆抗花叶病毒及耐疫霉根腐病的SSR标记分析[J]. 大豆科学, 2016, 27(5):746-750.(Lu S Y, Han Y P, Teng W L, et al. SSR marker analysis of soybean resistance to mosaic virus and Phytophthora root rot disease[J]. Soybean Science, 2016, 27(5):746-750.)[6]武晓玲. 大豆疫霉根腐病抗性评价、基因定位及抗性相关基因的筛选[D]. 南京:南京农业大学, 2009.(Wu X L. Evaluation of resistance to Phytophthora sojae root rot, gene mapping and screening of resistance-related genes[D]. Nanjing: Nanjing Agricultural University, 2009)[7]李修平, 韩英鹏, 丁俊杰,等. 与耐大豆疫霉根腐病相关的QTL分析[J]. 大豆科学, 2008, 27(4):572-575.(Li X P, Han Y P, Ding J J, et al. QTL analysis related to Phytophthora root rot resistance[J]. Soybean Science, 2008, 27(4): 572-575.)[8]Li X P , Han Y P, Teng W L , et al. Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’[J]. Theoretical & Applied Genetics, 2010, 121(4):651-658.[9]Han Y, Teng W , Yu K F, et al. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers[J]. Euphytica, 2008, 162(2):231-239.[10]Weng C R, Yu K F, Anderson T R , et al. A quantitative trait locus influencing tolerance to Phytophthora root rot in the soybean cultivar‘Conrad’[J]. Euphytica, 2007, 158(1-2):81-86.[11]Wu X , Zhou B , Zhao J , et al. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean[J]. Plant Breeding, 2011, 130(2):144-149.[12]Wang H H, Waller L,Tripathy S, et al. Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae[J]. Plant Genome, 2010, 3(1):23-40.[13]Wang H H , Wijeratne A , Wijeratne S , et al. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis[J]. BMC Genomics, 2012, 13(1):428-430.[14]Lee S, Mian M A R, Mchale L K, et al. Identification of quantitative trait loci conditioning partial resistance to in soybean PI 407861A[J]. Crop Science, 2013, 53(3):1022-1031.[15]Lee S, Mian M A R, Mchale L K, et al. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841[J]. Theoretical and Applied Genetics, 2013, 126(4):1121-1132.[16]Lee S, Mian M A R, Sneller C H, et al. Joint linkage QTL analyses for partial resistance to Phytophthora sojae, in soybean using six nested inbred populations with heterogeneous conditions[J]. Theoretical and Applied Genetics, 2014, 127(2):429-444.[18]Sun J T, Guo N, Lei J, et al. Association mapping for partial resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr.][J]. Journal of Genetics, 2014, 93(2):355-363.[19]Wang H H, St. Martin S K, Dorrance A E. Comparison of phenotypic methods and yield contributions of quantitative trait loci for partial resistance to in soybean[J]. Crop Science, 2012,1:609-622.[20]Hyten D L, Choi Ik-Young, Song Q J, et al. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping[J]. Crop Science, 2010, 50(3):960-968.[21]Rudner L M, Glass G V, Evartt D L, et al. A user′s guide to the meta-analysis of research studies[M]. Maryland: ER IC Clearinghouse on Assessment and Evaluation, 2002:96-98.[22]Goffinet B, Gerber S. Quantitative trait loci: A meta-analysis[J]. Genetics, 2000, 155(1):463-473.[23]Glass G V. Primary, secondary, and Meta-Analysis of research[J]. Educational Researcher, 1976, 5(10):3-8.[24]Etzel C J, Guerra R. Meta-analysis of genetic-linkage analysis of quantitative-trait loci[J]. American Journal of Human Genetics, 2002, 71(1):56-65.[25]Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 1997, 27(2):125-132.[26]Chardon F, Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J]. Genetics, 2004, 168(4):2169-2185.[27]李长育, 张艳娇, 王锦辉, 等. 大豆结瘤相关性状的Meta分析及候选基因挖掘[J]. 沈阳农业大学学报, 2018(2):188-195.(Li C Y, Zhang Y J, Wang J H, et al. Meta-analysis of candidate nodulation traits in soybean and candidate gene mining[J]. Journal of Shenyang Agricultural University, 2018(2): 188-195.) [28]李莹莹, 李瑞超, 程春光, 等. 大豆荚粒数相关QTL的Meta和Overview分析及其候选基因预测[J]. 农业生物技术学报, 2018, 26(11):5-17.(Li Y Y, Li R C, Cheng C G, et al. Meta and overview analysis of QTLs related to soybean pellets and their candidate gene predictions[J]. Journal of Agricultural Biotechnology, 2018, 26(11): 5-17.)[29]王晶, 宋万坤, 张闻博, 等. 大豆昆虫抗性相关QTLs的元分析[J]. 遗传, 2009, 31(9):953-961.(Wang J, Song W K, Zhang W B, et al. Meta-analysis of QTLs related to soybean insect resistance[J]. Genetics, 2009, 31(9): 953-961.)[30]仕相林, 孙亚男, 王家麟, 等. 大豆叶片性状QTL的定位及Meta分析[J]. 作物学报, 2012, 38(2):256-263.(Shi X L, Sun Y N, Wang J L, et al. Mapping and Meta-analysis of QTLs in soybean leaf traits[J]. Acta Agronomica Sinica, 2012, 38(2): 256-263.)[31]宋万坤, 王晶, 朱命喜, 等. 大豆脂肪酸组分相关QTL元分析[J]. 大豆科学, 2009, 28(5) :775-780.(Song W K, Wang J, Zhu M X, et al. QTL analysis of fatty acid composition related to soybean[J]. Soybean Science, 2009, 28(5): 775-780.)[32]孙亚男, 齐照明, 单大鹏, 等. 大豆株高QTL的定位与整合分析[J]. 分子植物育种, 2010, 8(4):687-693.(Sun Y N, Qi Z M, Shan D P, et al. Location and integration analysis of soybean plant height QTL[J]. Molecular Plant Breeding, 2010, 8(4): 687-693.)[33]Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results[J]. Nature Genetics, 1995, 11(3):241-247.[34]Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Theoretical and Applied Genetics, 2004, 109(1):122-128.[35]宝华宾, 梁帅强, 吕远大,等. 玉米籽粒蛋白含量Meta-QTL及候选基因分析[J]. 江苏农业学报, 2016, 32(4):736-745.(Bao H B, Liang S Q, Lyu Y D, et al. Meta-QTL and candidate gene analysis of maize grain protein content[J]. Journal of Jiangsu Agricultural Sciences, 2016, 32(4): 736-745.)[36]Daware A V, Srivastava R, Singh A K, et al. Regional association analysis of Meta QTLs delineates candidate grain size genes in rice[J]. Frontiers in Plant Science, 2017, 8:807.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]程莹鑫,梁吉利,刘庆莉,等.疫霉根腐病菌毒素对大豆不同组织中总多酚含量的影响[J].大豆科学,2014,33(04):524.[doi:10.11861/j.issn.1000-9841.2014.04.0524]
CHENG Ying-xin,LIANG Ji-li,LIU Qing-li,et al.Changes of Total Polyphenol Content in Soybean Treated by Pathotoxin Produced by Phytophthora sojae[J].Soybean Science,2014,33(06):524.[doi:10.11861/j.issn.1000-9841.2014.04.0524]
[12]任龙翚,张宝强,武晓玲,等.大豆种质对大豆疫霉菌株Pm8的抗性分析[J].大豆科学,2010,29(01):77.[doi:10.11861/j.issn.1000-9841.2010.01.0077]
REN Long-hui,ZHANG Bao-qiang,WU Xiao-ing,et al.Resistance of Soybean Germplasm to Phytophthora sojae Pm8[J].Soybean Science,2010,29(06):77.[doi:10.11861/j.issn.1000-9841.2010.01.0077]
[13]孙石,赵晋铭,武晓玲,等.黄淮地区大豆种质对疫霉根腐病的抗性分析[J].大豆科学,2008,27(03):465.[doi:10.11861/j.issn.1000-9841.2008.03.0465]
SUN Shi,ZHAO Jin-ming,WU Xiaoling,et al.Resistance of Soybean Germplasm to Phytohpthora in Huanhuai Valley[J].Soybean Science,2008,27(06):465.[doi:10.11861/j.issn.1000-9841.2008.03.0465]
[14]张淑珍,徐鹏飞,吴俊江,等.栽培大豆种质资源对大豆疫霉根腐病的抗性评价[J].大豆科学,2007,26(06):914.[doi:10.3969/j.issn.1000-9841.2007.06.020]
ZHANG Shu-zhen,XU Peng-fei,WU Jun-jiang,et al.IDENTIFICATION OF RESISTANCE TO PHYTOPHTHORA SOJAE IN SOYBEAN GERMPLASM[J].Soybean Science,2007,26(06):914.[doi:10.3969/j.issn.1000-9841.2007.06.020]
备注/Memo
基金项目:国家重点研发计划(2016YFD0100201);吉林省农业科技创新工程人才基金(C92070403);吉林省农业科技创新工程重大项目(CXGC2017ZD014)。第一作者简介:王帅(1991-),男,硕士,主要从事大豆分子育种研究。E-mail:15036284007@163.com。通讯作者:王玉民(1968-),男,博士,研究员,主要从事大豆种质资源研究。E-mail: wangym@cjaas.com;朴世领(1963-),男,硕士,教授,主要从事作物生理生化和分子育种研究。E-mail:pslpjj@ybu.edu.cn。