[1]Grau C R, Dorrance A E, Bond J, et al. Fungal diseases[M]//Boerma H R, Specht J E.Soybeans: Improvement, proAduction and uses 3rd ed. Madison: American Society of Agronomy, 2004:679-763. [2]Sugimoto T, Watanabe K, Yoshida S, et al. Field application of calcium to reduce Phytophthora stem rot of soybean, and calcium distribution in plants[J]. Plant Disease, 2010, 94: 812-819.
[3]Sugimoto T, Kato M, Yoshida S, et al.Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans[J].Breeding Science, 2012, 61: 511-522.
[4]Gordon S G, Berry S A, St Martin S K, et al. Genetic analysis of soybean plant introductions with resistance to Phytophthora sojae[J]. Phytopathology, 2007, 97: 106-112.
[5]Gordon S G, Kowitwanich K, Pipatpongpinyo W, et al.Molecular marker analysis of soybean plant introductions with resistance to Phytophthora sojae[J]. Phytopathology, 2007, 97: 113-118.
[6]Zhang J, Sun S, Wang G, et al. Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province[J]. Euphytica, 2014, 196: 375-384.
[7]Lin F, Zhao M, Ping J, et al. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B[J]. Theoretical and Applied Genetics, 2013, 126: 2177-2185.
[8]Sugimoto T, Yoshida S, Kaga A, et al. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge[J]. Euphytica, 2011, 182: 133-145.[9]Sun S, Zhao S L, Wang J M, et al.Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae[J]. Plant Breeding, 2011, 130: 139-143.
[10]Sun J, Li L H, Zhao J, et al. Genetic analysis and fine mapping of RpsJS, a novel resistancegene to Phytophthora sojae in soybean [Glycine max(L) Merr] [J].Theoretical and Applied Genetics, 2014, 127: 913-919.
[11]Wu X, Zhang B, Sun S, et al. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean[J].Agricultura Scientia China, 2011, 10: 1506-1511.
[12]Zhang J, Xia C, Wang X, et al. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar[J]. Theoretical and Applied Genetics, 2013, 126: 1555-1561.
[13]Zhang J, Xia C, Duan C, et al. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar[J]. PLoS ONE, 2014, 8: e69799.
[14]郭娜, 胡冠军, 赵晋铭, 等. 一对单显性大豆抗疫霉根腐病基因的遗传分析及定位[J].南京农业大学学报, 2015, 38(4): 532-537.(Guo N, Hu G J, Zhao J M, et al. Genetic analysis and mapping of a single dominant Phytophthora sojae resistance gene in soybean[J].Journal of Nanjing Agricultural University, 2015, 38(4): 532-537.)
[15]武晓玲,周斌,孙石,等.大豆对大豆疫霉菌株Pm14抗性的遗传分析及基因定位[J].中国农业科学, 2011, 44(3): 456-460. (Wu X L, Zhou B, Sun S, et al.Genetic analysis and mapping of resistance to Phytophthora sojae of Pm14 in soybean[J]. Scientia Agricultura Sinica, 2011, 44(3): 456-460.)
[16]姚海燕, 王晓鸣, 武小菲, 等.大豆品种早熟18抗疫霉根腐病基因的SSR分子标记[J]. 植物遗传资源学报, 2010, 11(2): 213-217. (Yao H Y, Wang X M, Wu X F, et al. Molecular mapping of Phytophthora resistance gene in soybean cultivar Zaoshu 18[J]. Journal of Plant Genetic Resources, 2010, 11(2): 213-217.)
[17]朱振东,霍云龙,王晓鸣,等.一个抗大豆疫霉根腐病新基因的分子鉴定[J].作物学报, 2007, 33(1): 154-157.(Zhu Z D, Huo Y L, Wang X M, et al. Molecular identification of a novel Phytophthora resistance gene in soybean[J]. Acta Agronomic Sinica, 2007, 33(1): 154-157.)
[18]Bhattacharyya M K, Narayanan N N, Gao H, et al. Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean[J]. Theoretical and Applied Genetics, 2005, 111: 75-86.
[19]Gao H, Narayanan N N, Ellison L, et al. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k. locus encode Phytophthora resistance in soybean[J]. Molecular Plant Microbe and Interaction, 2005, 18: 1035-1045.
[20]Tyler B M.Molecular basis of recognition between Phytophthora pathogens and their hosts[J]. Annual Review of Phytopathology, 2002, 40: 137-167.
[21]Schneider D S. Plant immunity and film noir: What gumshoe detectives can teach us about plant-pathogen interactions[J]. Cell, 2002, 109: 537-540.
[22]MacGregor T, Bhattacharyya M, Tyler B, et al. Genetic and physical mapping of Avr1a in Phytophthora sojae[J]. Genetics, 2002, 160: 949-959.
[23]Shan W, Cao M, Dan L, et al.The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b[J]. Molecular Plant Microbe and Interaction, 2004, 17: 394-403.
[24]Song T, Kale S, Arredondo F, et al.Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance[J. Molecular Plant Microbe and Interaction, 2013, 26: 711-720.
[25]Gijzen M, F-rster H, Coffey M D, et al. Cosegregation of Avr4 and Avr6 in Phytophthora sojae[J]Canadian Journal of Botany, 1996, 74: 800-802
[26]Whisson S C, Drenth A, Maclean D J, et al.Phytophthora sojae avirulence genes, RAPD and RFLP markers used toconstruct a detailed genetic linkage map[J]. Molecular Plant Microbe and Interaction, 1995, 8: 988-995.
[27]Whisson S C, Basnayake S, Maclean D J, et al.Phytophthora sojae avirulence genes χ2?and Avr6 are locatedin a 24 kb, recombination-rich region of genomic DNA[J]. Fungal Genetics and Biology, 2004, 41: 62-74.
[28]Dou D, Kale S, Liu T, et al. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6[J]. Molecular Plant Microbe and Interaction, 2010, 23: 425-435.
[29]Qutob D, Chapman B P, Gijzen M. Transgenerational gene silencing causes gain of virulence in a plant pathogen[J]. Nature Communications, 2013, 4: 1349
[30]Na R, Yu D, Qutob D, et al. Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d[J]. Molecular Plant Microbe and Interaction, 2013, 26: 969-976.
[31]Bernard R L, Smith P E, Kaufmann M J, et al. Inheritance of resistance to Phytophthora root and stem rot in soybean[J].Agronomy Journal, 1957, 49: 391.
[32]Buzzell R I, Anderson T R.Inheritance and race reaction of a new soybean Rps1 allele[J]. Plant Disease, 1992, 76: 600-601.
[33]Mueller E H, Athow K L, Laviolette F A. Inheritance of resistance to four physiologic races of Phytophthora megasperma var sojae[J]. Phytopathology, 1978, 68: 1318-1322.
[34]Ploper L D, Athow K L, Laviolette F A. A new allele at Rps3 locus for resistance to Phytophthora megasperma f. sp glycinea in soybean[J]. Phytopathology, 1985, 75: 690-694.
[35]Weng C, Yu K, Anderson T R, et al.Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7[J].Journal of Heredity, 2001, 92: 442-446.[36]Anderson T R, Buzzell R I Inheritance and linkage of the Rps7 gene for resistance to Phytophthora rot of soybean[J] Plant Disease, 1992, 76: 958-959.
[37]Gordon S G, St. Martin S K, Dorrance A E.Rps8 maps to aresistance gene rich region on soybean molecular linkage group[J]. Food Crop Science, 2006, 46: 168-173.
[38]Sandhu D, Schallock K G, Rivera-Velez N, et al. Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region[J].Journal of Heredity, 2005, 96: 536-541.
[39]Kilen T C, Hartwig E E, Keeling B L. Inheritance of a secondmajor gene for resistance to Phytophthora root rot in soybeans[J]. Crop Science, 1974, 14: 260-262.[40]Graham M A, Marek L F, Shoemaker R C. PCR sampling of disease resistance-like sequences from a disease resistance gene cluster in soybean[J].Therotical and Applied Genetics, 2002, 105: 50-57.
[41]Athow K L, Laviolette F A, Mueller E H, et al.A new major gene for resistance to Phytophthora megasperma var-sojae in soybean[J]. Phytopathology, 1980, 70: 977-980.
[42]Buzzell R I, Anderson T R. Another major gene for resistance to Phytophthora megasperma var sojae in soybean[J]. Soybean Genetics Newsletter, 1981, 18: 30-33.
[43]Athow K L, Laviolette F A.Rps6, a major gene for resistance to Phytophthora megasperma f sp glycinea in soybean[J]. Phytopathology, 1982, 72: 1564-1567.
[44]Zhang Z, Hao J, Yuan J, et al.Phytophthora-root rot resistancein soybean E00003[J]. Crop Science, 2014, 54: 492-499.
[45]Mideros S, Nita M, Dorrance A E. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean[J].Phytopathology, 2007, 97: 655-662.
[46]Burnham K D, Dorrance A E, van Toai T T, et al. Quantitative trait loci for partial resistance to Phytophthora sojae-in soybean[J]. Crop Science, 2003, 43: 1610-1617.
[47]Han Y, Teng W, Yu K, et al. Mapping QTL tolerance to Phytophthora-root rot in soybean using microsatellite and RAPD/SCAR derived markers[J]. Euphytica, 2008, 162: 231-239.
[48]Weng C, Yu K, Anderson T R, et al. A quantitative trait locus influencing tolerance to Phytophthora- root rot in the soybean cultivar Conrad[J].Euphytica, 2007, 158: 81-86.
[49]Li X, Han Y, Teng W, et al.Pyramided QTL underlying tolerance to Phytophthora-root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’[J].Theoretical and Applied Genetics, 2010, 121: 651-658.
[50]Wang H, Waller L, Tripathy S, et al. Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae[J]. Plant Genome, 2010, 3: 23-40.
[51]Wang H, Wijeratne A, Wijeratne S, et al.Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis[J].BMC Genomics, 2012, 13: 428.
[52]Tucker D M, Saghai Maroof M A, Mideros S, et al. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross[J]. Crop Science, 2010, 50: 628-635.
[53]Wu X, Zhou B, Zhao J, et al. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean[J]. Plant Breeding, 2011, 130: 144-149.
[54]Lee S, Mian M A R, McHale L K, et al. Identification of quantitative trait loci conditioning partial resistanceto Phytophthora sojae in soybean PI 407861A[J]. Crop Science, 2013, 53: 1022-1031
[55]Lee S, Mian M A, McHale L K, et al. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841[J].Theoretical and Applied Genetics, 2013, 126: 1121-1132.
[56]Lee S, Mian M A R, Sneller C H, et al.Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions[J].Theoretical and Applied Genetics, 2014, 127: 429-444.
[57]Sun J, Guo N, Lei J, et al. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max[L]Merr) [J].Journal of Genetics, 2014, 932: 355-63.
[58]Hoffman T, Schmidt J S, Zheng X Y, et al. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and geneforgene disease resistance[J]. Plant Physiology, 1999, 119: 935-949.
[59]Yu Y G, Buss G R, Maroof M A S. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotidebinding site[J]. Proceeding of the National Academy of Science, USA, 1996, 93: 11751-11756
[60]Sandhu D, Gao H, Cianzio S, et al. Deletion of a disease resistance nucleotide-binding-site leucine-rich- repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean[J]. Genetics, 2004, 168: 2157-2167.
[61]Gajendran K, Gonzales M D, Farmer A, et al.Phytophthora- functional genomics database (PFGD): Functional genomics of phytophthora-plant interactions[J]. Nucleic Acids Research, 2006, 34: 465-470.
[62]Narayanan N N, Grosic S, Tasma I M, et al.Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae-interaction[J]. Theoretical and Applied Genetics, 2009, 118: 399-412.
[63]Tyler B M, Jiang R H Y, Zhou L C, et al. Functional genomics and bioinformatics of the Phytophthora sojae-soybean interaction[M]//Gustafson J P, Taylor J, Stacey G. Genomics of disease. New York:Springer, 2007: 67-78.
[64]Zhou L, Mideros S X, Bao L, et al. Infection and genotype remodel the entire soybean transcriptome[J]. BMC Genomics, 2009, 10: 49.
[65]Lin F,Zhao M, Baumann D D, et al. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics[J].BMC Genomics, 2014, 15: 18.
[66]Wong J, Gao L, Yang Y, et al.Roles of small RNAs in soybean defense against Phytophthora sojae infection[J].Plant Journal, 2014, 79: 928-940.
[67]Guo N, Ye W, Wu X, et al. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae[J]. Genome, 2011, 54: 954-958.
[68]Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One, 2012, 7: E39650
[69]Zhao J, Zhang Y, Bian X, et al. A comparative proteomics analysis of soybean leaves under biotic and abiotic treatments[J]. Molecular Biology Reports, 2013, 40: 1553-1562.
[70]Parniske M, Ahlborn B, Werner D. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia[J].Journal of Bacteriology, 1991, 173: 3432-3439.
[71]Graham T L, Graham M Y, Subramanian S, et al. RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues[J]. Plant Physiology, 2007, 144: 728-740.
[72]Yan Q, Cui X, Su L, et al. GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae[J]. Plant Cell Reports, 2014, 33: 1275-1288.
[73]Xu P, Jiang L, Wu J, et al. Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae[J]. Molecular Biology Reports, 2014, 41: 4899-4909
[74]Jiang L, Wu J, Fan S, et al. Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae[J]. PLoS One, 2015, 10: e0129932.[75]Dong L, Cheng Y, Wu J, et al.Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean[J].Journal of Experimental Botany, 2015, 66: 2635-2647.?
[76]Borkowska M, Krzymowska M, Talarczyk A, et al. Transgenic potato plants expressing soybean beta-1,3endoglucanase gene exhibit an increased resistance to Phytophthora infestans[J]. Zeitschrift fur Naturforschung C, 1998, 53: 1012-1016.
[77]Guo P, Wang Y, Zhou X, et al.Expression of soybean lectin in transgenic tobacco results in enhanced resistance to pathogens and pests[J]. Plant Science, 2013, 211: 17-22.
[78]Liu T, Ye W, Ru Y, et al.Two host cytoplasmic effectors are required for pathogens is of Phytophthora sojae by suppression of host defenses[J].Plant Physiology, 2011, 155: 490-501.
[79]Chai C, Lin Y, Shen D, et al.Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression[J].PLoS One, 2013, 8: e67670.
[80]Sumit R, Sahu B B, Xu M, et al.Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean[J].BMC Plant Biology, 2012, 12: 87
[81]Zhang H, Wu Q, Cao S, et al.A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants[J].Plant Molecular Biology, 2014, 86: 495-511.
[82]Juvale P S, Hewezi T, Zhang C, et al. Temporal and spatial bean pod mottle virus-induced gene silencing in soybean[J]. Molecular Plant Pathology, 2012, 13: 1140-1148.
[83]Kandoth P K, Heinz R, Yeckel G, et al.A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max[J]. BMC Research Notes, 2013, 6: 255.
[84]Liu S, Kandoth P K, Warren S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492: 256-260.
[85]Liu J, Graham M A, Pedley K F, et al. Gaining insight into soybean defense responses using functional genomics approaches[J]. Briefings Functional Genomics, 2015, 14: 283-290.
[86]Jacobs T B, LaFayette P R, Schmitz R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9[J].BMC Biotechnology, 2015, 15: 16.
[87]Sun X, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5: 10342
[88]Cook D E, Lee T G, Guo X, et al.Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338: 1206-1209.[89]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 462: 178-183.[90]Song Q, Hyten D L, Jia G, et al. Development and evaluation of SoySNP50K, a high density genotyping array for soybean[J]. PLoS One, 2013, 8: e54985.[91]Han Y, Zhao X, Cao G, et al. Genetic characteristics of soybean resistance to HG type 0 and HG type 1-2-3-5-7 of the cyst nematode analyzed by genome-wide association mapping[J].BMC Genomics, 2015, 16: 598.