YAO Min-lei,ZHANG Jing-yao,ZHOU Xi,et al.The Digital Gene Expression Profiling Analysis of Genes in Response to Low Phosphorus Stress in Soybean[J].Soybean Science,2016,35(02):213-221.[doi:10.11861/j.issn.1000-9841.2016.02.0213]
大豆响应低磷胁迫的数字基因表达谱分析
- Title:
- The Digital Gene Expression Profiling Analysis of Genes in Response to Low Phosphorus Stress in Soybean
- Keywords:
- Soybean; Low phosphorus stress; Digital gene expression profiling; Differential expressed genes
- 文献标志码:
- A
- 摘要:
- 以OsPT6转基因T5代大豆为材料,以其受体亲本东农50为对照,对低磷胁迫处理下的根系cDNA文库进行数字基因表达谱分析,共筛选得到33个差异表达基因。以受体亲本为对照,在OsPT6转基因大豆中上调表达的差异基因有21个、下调表达的差异基因有12个。GO功能显著性富集分析表明,有25个差异表达基因在蛋白、核酸等生物大分子代谢、次生代谢和酶活性调节等过程中表现为富集。KEGG代谢通路分析表明仅有1个过氧化物酶超蛋白家族基因参与到苯丙合成、苯丙氨酸代谢和次生代谢产物合成等次生代谢途径中。综合分析表明:通过光合作用相关酶类活性的调节控制光合作用速率从而影响次生代谢途径可能是大豆适应低磷胁迫的主要途径。以上结果为大豆响应低磷胁迫相关分子机制的深入研究和功能基因的筛选奠定了基础。
- Abstract:
- In this study,the T5?line of the soybean cultivar transferred with OsPT6 gene and its receptor parent Dongnong 50 under low phosphorus stress were used to analyze their root cDNA library by digital gene expression profiling technology.The results showed that a total of 33 differential expressed genes(DEGs)were screened.Compared with the receptor parent, 21 DEGs were upregulated and 12 DEGs were down-regulated in the OsPT6 transgenic soybean.GO enrichment analysis showed that 25 DEGs were enriched in the processes of biological macromolecules metabolism, secondary metabolism and enzyme activity regulation. The KEGG pathway analysis showed that only one peroxidase superfamily protein was involved in the pathways such as phenylpropanoid biosynthesis, phenylalanine metabolism and biosynthesis of secondary metabolites. Comprehensive analysis showed that the photosynthesis rate affected the secondary metabolic pathways by regulating activity of the enzymes involved in photosynthesis,which could be the main way of soybean adapted to low phosphorus stress.These results provided a base for further study on the molecular mechanism in response to low phosphorus stress and functional genes screening in soybean.
参考文献/References:
[1]董薇,练云,余永亮,等.大豆磷胁迫响应研究进展[J].大豆科学,2012,31(1):135-140.(Dong W,Lian Y,Yu Y L,et al.Advances in low phosphorus stress on soybean[J].Soybean Science,2012,31(1):135-140.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]董薇,练云,余永亮,等.大豆磷胁迫响应研究进展[J].大豆科学,2012,31(01):135.[doi:10.3969/j.issn.1000-9841.2012.01.031]
DONG Wei,LIAN Yun,YU Yong-liang,et al.Advances in Low Phosphorus Stress on Soybean[J].Soybean Science,2012,31(02):135.[doi:10.3969/j.issn.1000-9841.2012.01.031]
[12]王树起,韩晓增,乔云发,等.缺磷胁迫对大豆根瘤生长和结瘤固氮的影响[J].大豆科学,2009,28(06):1000.[doi:10.11861/j.issn.1000-9841.2009.06.1000]
WANG Shu-qi,HAN Xiao-zeng,QIAO Yun-fa,et al.Nodule Growth,Nodulation and Nitrogen Fixation in Soybean(Glycine Max L.)as Affected by P Deficiency Stress[J].Soybean Science,2009,28(02):1000.[doi:10.11861/j.issn.1000-9841.2009.06.1000]
[13]吴俊江,钟鹏,刘丽君,等.不同大豆基因型耐低磷能力的评价[J].大豆科学,2008,27(06):983.[doi:10.11861/j.issn.1000-9841.2008.06.0983]
WU Jun-jiang,ZHONG Peng,LIU Li-jun,et al.Evaluation on the Low Phosphorous Tolerance of Different Soybean Genotypes[J].Soybean Science,2008,27(02):983.[doi:10.11861/j.issn.1000-9841.2008.06.0983]
[14]吴俊江,刘丽君,钟鹏,等.低磷胁迫对不同基因型大豆保护酶活性的影响[J].大豆科学,2008,27(03):437.[doi:10.11861/j.issn.1000-9841.2008.03.0437]
WU Jun-jiang,LIU Li-jun,ZHONG Peng,et al.Effects of Low Phosphorus Stress on Activities of Cell Defense Enzymes of Different P-efficiency Soybean[J].Soybean Science,2008,27(02):437.[doi:10.11861/j.issn.1000-9841.2008.03.0437]
[15]孔令剑,朱倩,单玉姿,等.蔗糖对低磷胁迫条件下大豆苗期根系形态和物质积累的影响[J].大豆科学,2018,37(02):239.[doi:10.11861/j.issn.1000-9841.2018.02.023]
KONG Ling-jian,ZHU Qian,SHAN Yu-zi,et al.Effect of Sucrose on Root Morphology and Substance Accumulation at Soybean Seedling Stage under Low Phosphorus Stress[J].Soybean Science,2018,37(02):239.[doi:10.11861/j.issn.1000-9841.2018.02.023]
[16]孙崇源,崔瑞凡,王瑞阳,等.大豆ERF家族基因生物信息学分析及其对低磷胁迫的响应[J].大豆科学,2021,40(06):748.[doi:10.11861/j.issn.1000-9841.2021.06.0748]
SUN Chong-yuan,CUI Rui-fan,WANG Rui-yang,et al.Bioinformatics Analysis on Soybean ERF Family Genes and Their Response to Low Phosphorus Stress[J].Soybean Science,2021,40(02):748.[doi:10.11861/j.issn.1000-9841.2021.06.0748]
备注/Memo
基金项目:国家农作物转基因重大专项(2011ZX08004-005,2013ZX08004005,2014ZX08004-005);国家高技术研究发展计划“863计划”(2011AA10A105);国家重点基础研究发展计划“973计划”(2011CB109301);教育部长江学者和创新团队发展计划(PCSIRT13073);江苏省现代作物生产协同创新中心(JCIC-MCP)。