[1]于志晶,尚丽霞,蔡勤安,等.水稻热激蛋白基因HSP90转化大豆的研究[J].大豆科学,2016,35(02):222-227.[doi:10.11861/j.issn.1000-9841.2016.02.0222]
 YU Zhi-jing,SHANG Li-xia,CAI Qin-an,et al.Transformation of Heat Shock Protein Gene HSP90 of Rice into Soybean[J].Soybean Science,2016,35(02):222-227.[doi:10.11861/j.issn.1000-9841.2016.02.0222]
点击复制

水稻热激蛋白基因HSP90转化大豆的研究

参考文献/References:

[1]Lindquist S.The heatshock response[J].Annual Review of Biochemistry, 1986, 55: 1151-1191

[2]Lindquist S, Craig E A. The heat-shock proteins[J]. Annual Review of Genetics,1988, 22: 631- 677.
[3]Horwitz J. Alphacrystallin can function as a molecular chaperone[J]. Proceedings of the National Academy of Sciences of the USA, 1992, 89: 10449-10453.
[4]Picard D. Heat-shock protein 90, a chaperone for folding and regulation[J]. Cellular and Molecular Life Sciences, 2002, 59: 1640-1648
[5]Wegele H, Muller L, Buchner J. Hsp70 and Hsp90.A relay team for protein folding[J]. Reviews of Physiology Biochemistry and Pharmacology 2004,151: 1-44
[6]Jackson S E, Queitsch C, Toft D.HSP90: From structure to phenotype[J]. Nature Structural & Molecular Biology, 2004, 11: 1152-1155
[7]Shinozaki F, Minami M, Chiba T, et al. Depletion of hsp90beta induces multiple defects in B cell receptor signaling[J]. Journal of Biological Chemistry, 2006, 281:16361-16369.
[8]Sangster T A, Salathia N, Undurraga S, et al.Hsp90 affects the expression of genetic variation and developmental stability in quantitative traits[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2963-2968.[9]Young J C, Moarefi I, Hartl F U. Hsp90: A specialized but essential protein-folding tool[J]. Journal of Cell Biology, 2001, 154: 267-273
[10]Wegele H, Wandinger S K, Schmid A B, et al.Substrate transfer from the chaperone Hsp70 to Hsp90[J].Journal of Molecular Biology, 2006, 356: 802-811.
[11]Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of heat shock response and beyond[J]. The FASEB Jourbal, 2001, 15: 1118-1131.
[12]Pareek A, Singla S L, Grover A. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera[J]. Plant Molecular Biology, 1995, 29: 293-301
[13]Liu D, Zhang X, Cheng Y, et al.rHsp-90 gene expression in response to several environmental stresses in rice (Oryza sativaL) [J].Plant Physiology and Biochemistry, 2006, 44: 380-386
[14]Yamada T, Satoshi W, Maiko A, et al. Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean[J]. Plant Biotechnology, 2010, 27: 217-220.
[15]Nishizawa A, Tainaka H, Yoshida E, et al.The 26S Proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress[J]. Plant Cell Physiology, 2010, 51: 486-496.
[16]Sangster T A, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Current Opinion in Plant Biology, 2005, 8(1): 86-92.
[17]Takano T, Liu S. Nucleotide sequence of a rice cDNA similar to heat shock protein 90 (HSP90) of barley and Catharanthus[G]. Published Only in Database, 2000, GenBank: AB037681-1
[18]Gamborg O L, Miller R A, Ojiama K. Nutrient requirements of suspension cultures of soybean root cells[J]. Experimental Cell Research, 1968, 50(1):151-158.
[19]Paz M M, Shou H, Guo Z, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant[J]. Euphytica, 2004, 136(2): 167-179.
[20]Santarem E R, Trick H N, Essig J S, et al.Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: Optimization of transient expression[J].Plant Cell Reports, 1998, 17: 752-759.
[21]Zhang Z, Xing A, Staswick P, et al. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean[J]. Plant Cell, Tissue and Organ Culture, 1999, 56(1): 37-46.
[22]Song Z Y, Tian J L, Fu W Z, et al. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability[J].Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(4): 289-298.
[23]Meurer C A, Dinkins R D, Collins G B. Factors affecting soybean cotyledonary node transformation[J].Plant Cell Reports, 1998, 18(3-4): 180-186.
[24]Somers D A, Samac D A, Olhoft P M. Recent advances in legume transformation[J]. Plant Physiology, 2003, 131: 892-899.
[25]Liu H K, Yang C, Wei Z M, Efficient Agrobacterium tumefaciens mediated transformation of soybeans using an embryonic tip regeneration system[J].Planta, 2004, 219(6): 1042-1049.
[26]Paz M M, Martinez J C, Kalvig A B, et al.Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation[J]. Plant Cell Reports, 2006, 25(3): 206-213.
[27]Liu S J, Wei Z M, Huang J Q. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties[J]. Plant Cell Reports,2008, 27(3): 489-498
[28]应珊,何晓薇,王秀荣,等. 影响农杆菌介导的大豆转化效率的因素研究[J]分子植物育种, 2008, 6(1): 32-40.(Ying S, He X W, Wang X R, et al. Assessment of factors affecting the transformation efficiency of soybean cotyledonary-node Agrobacterium-mediated transformation system[J]. Molecular Plant Breeding, 2008, 6(1): 32-40.)
[29]Mariashibu T S, Subramanyam K, Arun M, et al. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars[J]. Acta Physiologiae Plantarum, 2013, 35(1): 41-54.
[30]杨晓杰,刘传亮,张朝军,等.不同转化方法获得的转基因棉花外源基因拷贝数分析[J].农业生物技术学报,2011,19(2):221-229.(Yang X J, Liu C L, Zhang C J, et al. Copy level analysis of transgenic cotton obtained by different transformation methods[J]. Journal of Agricultural Biotechnology,2011, 19(2):221-229.)
[31]Flavell R B. Inactivation of gene expression in plants as a consequence of specific sequence duplication[J].Proceedings of the National Academy of Sciences of the USA, 1994, 91: 3490-3496.
[32]Vaucheret H, Beclin C, Elmayan T, et al. Transgeneinduced gene silencing in plants[J]. Plant Journal, 1998, 16: 651-659.
[33]Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T.DNA[J]. Plant Journal, 1994, 6(2): 271-282.
[34]Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens[J].Nature Biotechnology, 1996, 14(16): 745-750.
[35]Cheng M, Fry J E, Pang S, et al.Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J]. Plant Physiology, 1997, 115: 971-980.
[36]Xing A Q, Zhang Y Z, Sato S, et al. The use of the two T.DNA binary system to derive marker-free transgenic soybean[J]. In Vitro Cellular & Developmental Biology ?Plant, 2000, 36: 456-463.
[37]Olhoft P M, Somers D A. L.Cysteine increases Agrobacterium mediated T.DNA delivery into soybean cotyledonary-node cells [J]. Plant Cell Reports, 2001, 20(8): 706-711.
[38]Ko T S, Lee S, Krasnyanski S, et al. Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant [J]. Theoretical and Applied Genetics, 2003, 107: 439-447.
[39]Zeng P, Vadnais D A, Zhang Z, et al. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L) Merrill] [J].Plant Cell Reports, 2004, 22: 478-482
[40]Yamada K, Uchida A, Fukao Y, et al.Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2007, 282, 37794-37804.
[41]Arun M.In vitro regeneration and transfer of γ-tocopherol methyltransferase gene into Indian soybean cultivar[D]. Doctor Thesis, 2012: 208
[42]Prasinos C, Krampis K, Samakovli D, et al. Tight regulation of expression of two Arabidopsis cytosolic Hsp-90 genes during embryo development[J]. Journal of Experimental Botany, 2005, 56(412): 633-644.
[43]Sangster T A, Salathia N, Lee H N, et al.HSP90-buffered genetic variation is common in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2008, 105: 2969-2974.
[44]Yabe N, Takahashi T, Komeda Y. Analysis of tissue-specific expression of Arabidopsis thaliana HSP-90 Family Gene HSP-81, Plant and Cell Physiology, 1994, 35(8):1207-1219.
[45]Pareek A, Singla S, Grover A.Immunological evidence for accumulation of two high molecular weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera[J].Plant Molecular Biology, 1995, 29: 293-301.
[46]Liu D, Zhang X, Cheng Y, et al.rHsp-90 gene expression in response to several environmental stresses in rice (Oryza sativa L) [J].Plant Physiology and Biochemistry, 2006, 44: 380-386.
[47]刘大丽,张欣欣,程玉祥,等逆境下水稻 (Oryza sativa L) rHsp-90基因的克隆及功能分析[J].分子植物育种,2006, 4(3): 317-322.(Liu D L, Zhang X X, Cheng Y X, et al.Cloning and functional analysis of gene rHsp-90 from rice (Oryza sativa L) in stress[J].Plant Molecular Breeding, 2006, 4(3): 317-322.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]张红侠,冯瑞华,关大伟,等.黄土高原地区优良大豆根瘤菌的筛选与接种方式研究[J].大豆科学,2010,29(06):996.[doi:10.11861/j.issn.1000-9841.2010.06.0996]
 ZHANG Hong-xia,FENG Rui-hua,GUAN Da-wei,et al.Screening of Superior Soybean Rhizobial Strains and Analyzing of Different Inoculation Methods in Loess Plateau Region of China[J].Soybean Science,2010,29(02):996.[doi:10.11861/j.issn.1000-9841.2010.06.0996]
[12]孙雪慧,蔡勤安,尚丽霞,等.耐旱基因cspB转化大豆的研究[J].大豆科学,2017,36(05):699.[doi:10.11861/j.issn.1000-9841.2017.05.0699]
 SUN Xue-hui,CAI Qin-an,SHANG Li-xia,et al.Genetic Transformation of Soybean with Drought Tolerance Gene cspB from Bacillus subtilis[J].Soybean Science,2017,36(02):699.[doi:10.11861/j.issn.1000-9841.2017.05.0699]
[13]刘小荣,任小俊,任海红,等.耐旱大豆新品种汾豆93的选育及高产栽培技术[J].大豆科学,2022,41(06):758.[doi:10.11861/j.issn.1000-9841.2022.06.0758]
 LIU Xiao-rong,REN Xiao-jun,REN Hai-hong,et al.Breeding and High-yield Cultivation Technology of A New Drought Tolerant Soybean Variety Fendou 93[J].Soybean Science,2022,41(02):758.[doi:10.11861/j.issn.1000-9841.2022.06.0758]

备注/Memo

基金项目:吉林省科技厅重点科技攻关项目(20130206005NY);农业部转基因生物新品种培育重大专项(2014ZX08004-002-001)。

第一作者简介:于志晶(1977-),女,硕士,主要从事植物分子生物学、遗传转化与代谢工程研究。E-mail:yuzhijing0001@163.com。
通讯作者:孟凡钢(1978-),男,硕士,副研究员,主要从事大豆遗传育种研究。E-mail:mengfg2013@163.com;马瑞(1966 -),男,博士研究员,主要从事植物生物技术研究。E-mail:ruimaa@126.com。

更新日期/Last Update: 2016-04-04