CHEN Qing-shan,JIANG Hong-wei,SUN Dian-jun,et al.QTL Mapping for 100 seed Weight Using Wild Soybean Chromosome Segment Substitution Lines[J].Soybean Science,2014,33(02):154-160.[doi:10.11861/j.issn.1000-9841.2014.02.0154]
利用野生大豆染色体片段代换系定位百粒重QTL
- Title:
- QTL Mapping for 100 seed Weight Using Wild Soybean Chromosome Segment Substitution Lines
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 利用野生大豆ZYD00006(供体亲本)与黑龙江省主栽品种绥农14(轮回亲本)所构建的高世代(BC3)染色体片段代换系130个株行进行QTL定位。采用基于单标记的方差分析方法检测到25个百粒重相关的SSR位点,为避免由于标记位点共分离而产生的假阳性结果,对方差分析得到的相邻位点进行代换作图分析,最终获得分布于大豆10条连锁群上的19个百粒重相关位点。其中有7个位点与已有研究结果完全一致;2个位点与已有研究结果位置相距0.9和4.6 cM;其余10个位点首次发现,推测是本套材料的特有位点;其中位点QSW-D1a-2加性效应3.6,QSW-H-2加性效应-2.1,片段长度均小于10 cM,可作为继续研究的首选位点。
- Abstract:
- A chromosome segment substitution lines(BC3)including 130 lines was constructed by the cross of wild soybean ZYD00006(donor parent)and cultivar Suinong 14(recurrent parent).The QTL underlying 100 seed weight was identified using ANOVA Method based on single marker with trait.Twenty five SSR markers underlying 100 seed weight were detected with ANOVA method.To avoid the false positive of co segregation markers,substitution mapping was used to verify the result of ANOVA method.Finally,Nineteen QTL underlying 100 seed weight were identified using two methods and those QTL distributed on 10 linkage groups.Seven QTL were in full accord with known results;two QTL were somewhat different with known results of 0.9 cM or ?4.6 cM ?distance.Another 10 ones were first discovery of loci,which should be specific loci in the study.QSW-D1a2 and QSWH2 with 3.6 and -2.1 of additive effects,fragments length were less than 10 cM could be used as the first choice loci for further study.In this study,substitution lines which had similar genetic background were used to QTL mapping.The result of QTL mapping is more credible because there is no interference of genetic background.Specific materials and important loci lay a foundation for further study on 100seed weight QTL fine mapping and molecular assisted breeding.
参考文献/References:
[1] Mian M A R,Bailey M A,Tamulonis J P,et al.Molecular markers associated with seed weight in two soybean populations[J].Theoretical and Applied Genetics,1996,93:1011-1016.
[2]Li D,Pfeiffer T W,Cornelius P L.Soybean QTL for yield and yield components associated with alleles[J].Crop Science,2008,48:571-581.
[3]Maughan P J,Maroof M A S,Buss G R.Molecular-marker analysis of seed-weight:genomic locations,gene action,and evidence for orthologous evolution among three legume species[J].Theoretical and Applied Genetics,1996,93:574-579.
[4]Chen Q S,Zhang Z C,Liu C Y,et al.QTL analysis of major agronomic traits in soybean[J].Agricultural Sciences in China,2007,6:399-405.
[5]Sun Y,Pan J,Shi X,et al.Multi-environment mapping and meta-analysis of 100-seed weight in soybean[J].Molecular Biology Reports,2012,39:9435-9443.
[6]
汪霞
,
徐宇
,
李广军
,
等
.
大豆百粒重
QTL
定位
[J].
作物学报
,2010,36(10):1674-1682.(Wang X,Xu Y,Li G J,et al.Mapping quantitative trait loci for 100-seed weight in soybean(Glycine max L.Merr.)[J].Acta Agronomica Sinica,2010,36(10):1674-1682.)
[7]
王立秋
,
赵永锋
,
薛亚东
,
等
.
玉米衔接式单片段导入系群体的构建和评价
[J].
作物学报
,2007,33(4):663-668.(Wang L Q,Zhao Y F,Xue Y D,et al.Development and evaluation to two link-up single segment introgression lines(SSILs)of maize(Zea maysL.)[J].Acta Agronomica Sinica,2007,33(4):663-668.)
[8]Gur A,Zamir D.Unused natural variation can lift yield barriers in plant breeding[J].PLoS Biology,2004,2:e245.
[9]Zamir D.Improving plant breeding with exotic genetic libraries[J].Nature Reviews Genetics,2001,2:983-989.
[10]Li M,Sun P,Zhou H,et al.Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice(Oryza sativa L.)[J].Theoretical and Applied Genetics,2011,123:411-420.
[11]Koide Y,Fujita D,Tagle A G,et al.QTL for spikelet number from a high yielding rice variety,Hoshiaoba,detected in an introgression line with the genetic background of an indica rice variety,IR64[J].Euphytica,2013,192:97-106.
[12]Qi H,Huang J,Zheng Q,et al.Identification of combining ability loci for five yield related traits in maize using a set of testcrosses with introgression lines[J].Theoretical and Applied Genetics,2013,126:369-377.
[13]Davoyan E R,Davoyan R O,Bebyakina I V,et al.Identification of a leaf-rust resistance gene in species of AegilopsL.,synthetic forms,and introgression lines of common wheat[J].Russian Journal of Genetics:Applied Research,2012,2:325-329.
[14]Lei M P,Li G R,Zhou L,et al.Identification of wheat-Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics[J].Euphytica,2013,194:197-205.
[15]Zhang W B,Qiu P C,Jiang H W,et al.Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean[J].Molecular Biology Reports,2012,39:6087-6094.
[16]Wang W,He Q,Yang H,et al.Development of a chromosome segment substitution line population with wild soybean(Glycine soja Sieb.et Zucc.)as donor parent[J].Euphytica,2013,189:293-307.
[17]
曾庆力
,
蒋洪蔚
,
刘春燕
,
等
.
利用高世代回交群体对大豆小粒性状的基因型分析及
QTL
定位
[J].
中国油料作物学报
,2012,34(5):473-477.(Zeng Q L,Jiang H W,Liu C Y,et al.Genotype analysis and QTL mapping small seed size soybean with advanced back[J] .Chinese Journal of Oil Crop Sciences,2012,34(5):473-477.)
[18]
邱丽娟
.
大豆种质资源描述规范和数据标准
[M].
北京
:
中国农业出版社
,2006.(Qiu L J.Descriptors and date standard for soybean(Glycine max L.Merr.)[M].Beijing:Chinese Agricultural Press,2006.)
[19]Doyle J J.Isolation of plant DNA from fresh tissue[J].Focus,1990,12:13-15.
[20]Foncéka D,HodoAbalo T,Rivallan R,et al.Genetic mapping of wild introgressions into cultivated peanut:a way toward enlarging the genetic basis of a recent allotetraploid[J].BMC Plant Biology,2009,9:103.
[21]McCough S R,Doerge R W.QTL mapping in rice[J].Trends in Genetics,1995,11:482-487.
[22]
何风华
,
席章营
,
曾瑞珍
,
等
.
利用单片段代换系定位水稻抽穗期
QTL[J].
中国农业科学
,2005,38(8):1505-1513.(He F H,Xi Z Y,Zeng R Z,et al.Mapping of heading date QTLs in rice(Oryza sativa L.)using single segment substitution lines[J].Scientia Agricultura Sinica,2005,38(8):1505-1513.)
[23]Eshed Y,Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL[J].Genetics,1995,141:1147.
[24]Lippman Z B,Semel Y,Zamir D.An integrated view of quantitative trait variation using tomato interspecific introgression lines[J].Current Opinion in Genetics & Development,2007,17:545-552.
[25]Krieger U,Lippman Z B,Zamir D.The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato[J].Nature Genetics,2010,42:459-463.
[26]Ebitani T,Takeuchi Y,Nonoue Y,et al.Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’[J].Breeding Science,2005,55:65-73.
[27]Qi Z M,Sun Y N,Wang J L,et al.Meta-analysis of 100-seed weight QTLs in soybean[J].Agricultural Sciences in China,2011,10:327-334.
[28]Hoeck J A,Fehr W R,Shoemaker R C,et al.Molecular marker analysis of seed size in soybean[J].Crop Science,2003,43:68-74.
[29]Panthee D R,Pantalone V R,West D R,et al.Quantitative trait loci for seed protein and oil concentration,and seed size in soybean[J].Crop Science,2005,45:2015-2022.
[30]Orf J H,Chase K,Jarvik T,et al.Genetics of soybean agronomic traits:I.Comparison of three related recombinant inbred populations[J].Crop Science,1999,39:1642-1651.
[31]Csanadi G Y,Vollmann J,Stift G,et al.Seed quality QTLs identified in a molecular map of early maturing soybean[J].Theoretical and Applied Genetics,2001,103:912-919.
[32]Gong J Y,Wu J R,Wang K,et al.Fine mapping of qHUS6.1,a quantitative trait locus for silicon content in rice(Oryza sativa L.)[J].Chinese Science Bulletin,2010,55:3283-3287.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]王久镇,王丹华,马占洲,等.野生大豆染色体片段代换系百粒重的选择牵连效应及响应分析[J].大豆科学,2015,34(06):950.[doi:10.11861/j.issn.1000-9841.2015.06.0950]
WANG Jiu-zhen,WANG Dan-hua,MA Zhan-zhou,et al.Hitchhiking Effect and Responses Analysis about 100-Seed Weight of Wild Soybean Chromosome Segment Substitution Lines[J].Soybean Science,2015,34(02):950.[doi:10.11861/j.issn.1000-9841.2015.06.0950]
[12]魏思明,陈庆山,蒋洪蔚,等.利用野生大豆染色体片段代换系定位单株粒重QTL[J].大豆科学,2016,35(05):742.[doi:10.11861/j.issn.1000-9841.2016.05.0742]
WEI Si-ming,CHEN Qing-shan,JIANG Hong-wei,et al.TL Mapping for Seed Weight per Plant by using the Wild Soybean Chromosome Segment Substitution Lines[J].Soybean Science,2016,35(02):742.[doi:10.11861/j.issn.1000-9841.2016.05.0742]
备注/Memo
基金项目:教育部新世纪优秀人才支持计划(NECT-1207-01);黑龙江省自然科学基金重点项目(ZD201213);现代农业产业体系(CARS-04-02A);黑龙江省博士后基金(LBH-Z12035);中国博士后基金(2012M520030);黑龙江省高校长江后备支持计划项目(2014CJHB004)。
第一作者简介:陈庆山(1973-),男,博士,教授,博士生导师,主要从事大豆生物技术研究。E-mail:qshchen@126.com。
通讯作者:胡国华(1951-),男,博士,研究员,主要从事大豆遗传育种与栽培研究。E-mail:hugh757@vip.163.com。