CAI Yan,HAN Peng-cheng,QI Mei-yu,et al.Analysis of Higher Structure Changes of Soybean Lipoxygenase-1 During Thermal Inactivation[J].Soybean Science,2021,40(05):703-707.[doi:10.11861/j.issn.1000-9841.2021.05.0703]
大豆脂肪氧合酶LOX-1热失活的高级结构变化分析
- Title:
- Analysis of Higher Structure Changes of Soybean Lipoxygenase-1 During Thermal Inactivation
- Keywords:
- Soybean; Lipoxygenase; LOX-1; Inactivation kinetics; FTIR; Secondary structure
- 文献标志码:
- A
- 摘要:
- 为促进大豆脂肪氧合酶LOX-1的动力学及催化机理研究,并为LOX-1活性的合理调控提供科学依据,本研究利用FT-IR技术分析LOX-1在20~80 ℃范围内的热失活和高级结构变化,采用Omnic 6.0和Peakfit 4.12软件处理FT-IR光谱,结合傅里叶自去卷积(FSD)、二阶导数分辨和曲线拟合技术分析酰胺I带,获得不同温度下LOX-1的二级结构含量,并进行热失活条件下LOX-1荧光光谱分析。研究结果显示:LOX酶活在50 ℃和55 ℃下随时间逐步降低,65 ℃时3 min内活性完全丧失,LOX-1酶对热具有敏感性。50~65 ℃时,α-螺旋和β-折叠的含量均在25%左右浮动,变化幅度较热失活小,说明LOX-1二级结构的改变不是其活性丧失的主要原因。荧光光谱显示时间延长和温度升高后,LOX-1的荧光发射峰未发生明显改变,说明50~65 ℃时活性位没有进一步将色氨酸残基暴露于溶剂中,很可能活性位只发生了微小变化。
- Abstract:
- In order to provide a new perspective for the study of LOX-1 protein tissue,promote the study of its kinetics and catalytic mechanism,and provide a useful reference for the rational regulation of LOX-1 activity,the thermal inactivation and secondary structure change of LOX-1 in the temperature range of 20-80 ℃ were studied by FT-IR.The FT-IR spectra were processed by Omnic 6.0 and Peakfit 4.12 software,and the amide I band was analyzed by Fourier self deconvolution(FSD),second derivative resolution and curve fitting techniques.The secondary structure content of LOX-1 at different temperatures were obtained,and the fluorescence spectra under thermal inactivation conditions were analyzed.The results showed that LOX-1 activity decreased gradually with time at 50 ℃ and 55 ℃,and completely lost within 3 min at 65 ℃.LOX-1 was sensitive to heat.During 50-65 ℃,the content of α-helix and β-sheet fluctuated about 25%,and the change range was not as large as that of thermal inactivation,which indicated that the change of LOX-1 secondary structure was not the main reason for the loss of LOX-1 activity.The fluorescence spectrum showed that the fluorescence emission peak of LOX-1 did not change significantly with the increase of time and temperature,indicating that the tryptophan residues were not further exposed to the solvent,so it is likely that the active site only changed slightly.
参考文献/References:
[1]Tayeb A H,Sadeghifar H,Martin A,et al. Lipoxygenase-mediated peroxidation of model plant extractives[J]. Industrial Crops and Products Industry,2017,104:253-262.[2]Zhu Z J,Chen H M,Chen J J.One-step bioconversion of fatty acids into C8-C9 volatile aroma compounds by a multifunctional lipoxygenase cloned from Pyropia haitanensis[J].Journal of Agricultural Food and Chemistry,2018,66(5):1233-1241.[3]Chong W K,Mah S Y,Easa A M,et al.Thermal inactivation of lip-oxygenase in soyabean using superheated steam to produce low beany flavour soya milk[J].Journal of Food Science and Technology,2019,56(90):4371-4379.[4]Yilmaza S T,Cakli S,Yilmaza E B S,et al.Effect of fillet temper-ature on lipoxygenase activity in sardine mince with and without milk protein concentrate[J].Food Science and Technology,2018,90:38-44.[5]Navicha W B,Hua Y F.Optimization of soybean roasting parameters in developing nutritious and lipoxygenase free soymilk[J].Journal of Food Measurement and Characterization,2017,11(4):1899-1908.[6]Mishra V K,MISHA S.Origin of regio- and stereospecific catalysis by 8-lipoxygenase[J].Journal of Physical Chemistry B,2019,123(50):10605-10621.[7]Offenbacher A R,Sharma A,Doan P E,et al.Soybean lipoxyge-nase-substrate complex:Correlation between the properties of tunneling-ready states and eNDOR-detected structures of ground states[J].Biochemistry,2020,59(7):901-910.[8]Cautela D,Castaldo D,Laratta B.Thermal inactivation of pectin me-thylesterase in pineapple juice[J]. Journal of Food Measurement and Characterization,2018,12(4):2795-2800.[9]Thalipal C,Jain N,Rashind N,et al.Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase[J].Archives of Biochemistry and Biophysics,2018,637:21-30.[10]Michael S,Philipp E,Stephanie B M,et al.Lipoxygenase inact-ivation kinetics and quality-related enzyme activities of narrow-leafed lupin seeds and flakes[J].LWT-Food Science and Technology,2016,68:36-43.[11]Xu B,Wang L K,Miao W J,et al.Thermal versus microwave inactivation kinetics of lipase and lipoxygenase from wheat germ[J].Journal of Food Process Engineering,2016,39(3):247-255.[12]Perez C J,Califano A,Victoria S M,et al.Kinetic parameters for the thermal inactivation of peroxidase and lipoxygenase in precooked frozen Brassica Species[J].Journal of Food Science,2017,82(6):1378-1386.[13]Stephany M,Kapusi K,Bader M S,et al.Odour-active volatiles in lupin kernel fibre preparations (Lupinus angustifolius L.):Effects of thermal lipoxygenase inactivation[J].European Journal of Food Research and Technology,2016,242(7):995-1004.[14]Xu Z,Liu S,Lu X Y,et al.Thermal inactivation of a recombinant lipoxygenase from Pseudomonas aeruginosa BBE in the absence and presence of additives[J].Journal of the Science of Food and Agriculture,2014,94(9):1753-1757.[15]Hande B,Alev B,Mete S,et al.Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme:A FTIR study[J].Food Chemistry,2015,187:263-269.[16]Pinto M D,Macias P.Fluorescence quenching study on the interaction between quercetin and lipoxygenase[J].Journal of Fluorescence,2011,21:1311-1318.[17]Pinto M D,Duque A L.Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase[J].Journal of Molecular Structure,2010,980:143-148.[18]Boyington J C,Gaffney B J,Amzel L M.The three-dimensional structure of an arachidonic acid 15-lipoxygenase[J].Science,1993,260:1482-1486.[19]Ludwig P,Tordi M G,Colosimo A.Circular dichroism observations on the lipoxygenase from reticulocytes[J].Biochimica et Biophysica Acta,1985,830:136-139.[20]Wei L,Zhang R B,Wang L M,et al.Conformation changes of polyphenol oxidase and lipoxygenase induced by PEF treatment[J].Journal of Applied Electrochemistry,2010,40(2):295-301.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2021-03-31