[1]张雄,徐鲁荣,刘思岑,等.丁香假单胞菌变种Pto(AvrB)胁迫下大豆叶片转录组分析[J].大豆科学,2019,38(06):879-888.[doi:10.11861/j.issn.1000-9841.2019.06.0879]
 ZHANG Xiong,XU Lu-rong,LIU Si-cen,et al.Transcriptome Analysis of Soybean Leaves Under the Stress of Pseudomonas syringae[J].Soybean Science,2019,38(06):879-888.[doi:10.11861/j.issn.1000-9841.2019.06.0879]
点击复制

丁香假单胞菌变种Pto(AvrB)胁迫下大豆叶片转录组分析

参考文献/References:

[1]Zou J, Rodriguez-Zas S, Aldea M, et al. Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis[J]. Molecular Plant-Microbe Interactions, 2005, 18(11): 1161-1174.[2]Collmer A, Charkowski A O, Deng W L, et al. Bacterial Avr proteins: Secreted agents of parasitism and elicitors of plant defense[J]. Delivery and Perception of Pathogen Signals in Plants, 2001: 36-45.[3]White F F, Yang B, Johnson L B. Prospects for understanding avirulence gene function[J]. Current Opinion in Plant Biology, 2000, 3(4): 291-298.[4]Ashfield T, Ong L E, Nobuta K, et al. Convergent evolution of disease resistance gene specificity in two flowering plant families[J]. Plant Cell, 2004, 16(2): 309-318.[5]Grant M R, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1gene enabling dual specificity disease resistance[J].Science, 1995, 269(5225): 843-846.[6]Mackey D, Iii B F H, Wiig A, et al. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis[J].Cell, 2002, 108(6): 743-754.[7]Shang Y L, Li X Y, Cui H T, et al. RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19200-19205.[8]Cui H, Wang Y, Xue L, et al. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cell Host & Microbe, 2010, 2010, 7(2): 164-175.[9]Eitas T K, Nimchuk Z L, Dangl J L. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB[J]. Proceedings of the National Academy of Sciences, 2008, 105(17):6475-6480.[10]Selote D, Robin G P, Kachroo A. GmRIN4 protein family members function nonredundantly in soybean race-specific resistance against Pseudomonas syringae[J]. New Phytologist, 2013, 197(4):1225-1235.[11]Selote D, Kachroo A. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean[J]. Plant Physiology, 2010, 153(11):1199-211.[12]Leister R T, Katagiri F. A resistance gene product of the nucleotide binding site-Leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo[J]. The Plant Journal, 2000, 22(4):345-354.[13]Selote D, Kachroo A. RIN4-like proteins mediate resistance protein-derived soybean defense against Pseudomonas syringae[J]. Plant Signaling & Behavior,2010,5(11):1453-1456.[14]Belkhadir Y. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1[J]. The Plant Cell Online, 2004, 16(10):2822-2835.[15]Berretta J, Morillon A. Pervasive transcription constitutes a new level of eukaryotic genome regulation[J]. Embo Reports, 2009, 10(9): 973-982.[16]成舒飞,端木慧子,陈超,等.大豆MYB转录因子的全基因组鉴定及生物信息学分析[J]. 大豆科学,2016, 35(1): 52-57. (Cheng S F, Duanmu H Z,Cheng C,et al.Whole genome identification of soybean MYB transcription factors and bioinformatics analysis[J]. Soybean Science,2016, 35(1): 52-57.)[17]张峰, 赵云霞, 黄先忠. 利用转录组测序分析大豆矮小突变体中差异表达基因[D].新疆:石河子大学, 2014.(Zhang F, Zhao Y X, Huang X Z. Analysis of differentially expressed genes in soybean dwarf mutants by transcriptome sequencing[D].Xinjiang:Shihezi University, 2014.)[18]杨楠, 赵凯歌,陈龙清. 蜡梅花转录组数据分析及次生代谢产物合成途径研究[J].北京林业大学学报,2012,34(S1): 104-107.(Yang N, Zhao K G, Chen L Q.Analysis of transcriptome data and synthesis pathways of secondary metabolites[J].Journal of Beijing Forestry University,2012, 34(S1): 104-107.)[19]吴凯朝, 黄诚梅, 李杨瑞, 等. Trizol试剂法快速高效提取3种作物不同组织总RNA[J]. 南方农业学报, 2012, 43(12):1934-1939. (Wu K C, Huang C M, Li Y R, et al. Rapid and efficient extraction of total RNA from different tissues of three crops by Trizol reagent[J]. Southern Agricultural Journal, 2012, 43(12): 1934-1939.)[20]Anders S, Huber W. Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10): R106.[21]Kazan K, Manners J M. Linking development to defense: Auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382.[22]Alazem M, Lin N S. Roles of plant hormones in the regulation of host-virus interactions[J]. Molecular Plant Pathology, 2015, 16(5):529-540.[23]Miguel A L, Bannenberg G, Castresana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival[J]. Current Opinion in Plant Biology, 2008, 11(4):420-427.[24]Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19613-19618.[25]Robert-Seilaniantz A, Grant M, Jones J D G. Hormone crosstalk in plant disease and defense: More than just JASMONATE-SALICYLATE antagonism[J]. Annual Review of Phytopathology, 2011, 49(1):317-343.[26]Thilmony R, Underwood W, He S Y. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7[J]. The Plant Journal, 2006, 46:34-53.[27]Chen Z. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50):20131-20136.[28]Wang D, Pajerowska-Mukhtar K, Culler A H, et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway[J]. Current Biology, 2007, 17(20):1784-1790.[29]Kazan K, Manners J M. Linking development to defense: Auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382.[30]Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amido synthetase gh3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice[J]. The Plant Cell Online, 2008, 20(1):228-240. [31]Park J E, Park J Y, Kim Y S, et al. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(13):10036-10046.[32]Abreu M E, Munne-Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2mutants increases seed yield in the annual plant Arabidopsis thaliana[J].Journal of Experimental Botany,2009,60(4): 1261-1271.[33]Wojtaszek P. Oxidative burst: An early plant response to pathogen infection[J]. Biochemical Journal, 1997, 322(3):681-692.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:上海市国际科技合作基金(17310742000);上海交通大学“AgriX”基金(AgriX 2016007)。第一作者简介:〖HTSS〗〖ZK(〗张雄(1995),男,硕士,主要从事植物生物胁迫下抗性机制研究。Email:ZHANGXIONG233333@sjtueducn。〖ZK)〗〖HT6H〗通讯作者:〖HTSS〗〖ZK(〗耿雪青(1977),女,博士,副研究员,主要从事植物生物胁迫下抗性机制研究。Email:xqgeng@sjtueducn。

更新日期/Last Update: 1900-01-01