[1]黄建丽,邓肃霜,沈甲诚,等.大豆JAZ基因家族的鉴定及其对疫霉胁迫的响应[J].大豆科学,2019,38(06):868-878.[doi:10.11861/j.issn.1000-9841.2019.06.0868]
 HUANG Jian-li,DENG Su-shuang,SHEN Jia-cheng,et al.Identification and Response to Phytophthora sojae Infections of JAZ Gene Family in Soybean[J].Soybean Science,2019,38(06):868-878.[doi:10.11861/j.issn.1000-9841.2019.06.0868]
点击复制

大豆JAZ基因家族的鉴定及其对疫霉胁迫的响应

参考文献/References:

[1]宋云, 李林宣, 卓凤萍, 等. 茉莉酸信号传导在植物抗逆性方面研究进展[J]. 中国农业科技导报, 2015, 17(2): 17-24. (Song Y, Li L X, Zhou F P, et al. Progress on jasmonic acid signaling in plant stress resistant[J]. Journal of Agricultural Science and Technology, 2015, 17(2): 17-24.)[2]Chico J M, Chini A, Fonseca S, et al. JAZ repressors set the rhythm in jasmonate signaling[J]. Current Opinion in Plant Biology, 2008, 11(5): 486-494.[3]Browse J. Jasmonate passes muster: A receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60:183-205.[4]Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665.[5]Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666-671.[6]Yan Y, Stolz S, Chetelat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway[J]. The Plant Cell, 2007, 19(8): 2470-2483.[7]Pauwels L, Goossens A. The JAZ proteins: A crucial interface in the jasmonate signaling cascade[J]. The Plant Cell, 2011, 23(9): 3089-3100.[8]Oh Y, Baldwin I T, Galis I. NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants[J]. Plant Physiology, 2012, 159(2): 769-788.[9]Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D, et al. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice[J]. Plant, Cell and Environment, 2014, 37(2): 451-461.[10]Zhang Z, Li X, Yu R, et al. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family[J]. Molecular Genetics and Genomics, 2015, 290(5): 1849-1858.[11]Sun H, Chen L, Li J, et al. The JASMONATE ZIM-domain gene family mediates JA signaling and stress response in cotton[J]. Plant and Cell Physiology, 2017, 58(12): 2139-2154.[12]Chung H S, Howe G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J]. The Plant Cell, 2009, 21(1): 131-145.[13]Sheard L B, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405.[14]Thatcher L F, Cevik V, Grant M, et al. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum[J]. Journal of Experimental Botany, 2016, 67(8): 2367-2386.[15]潘婷, 胡利伟, 王中, 等. 烟草JAZ1基因的克隆和功能分析[J]. 烟草科技, 2018, 51(12): 15-22. (Pan T, Hu L W, Wang Z, et al. Cloning and function analysis of JAZ1gene from Nicotiana tabacum[J]. Tobacco Science and Technology, 2018, 51(12): 15-22.)[16]Yamada S, Kano A, Tamaoki D, et al. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice[J]. Plant and Cell Physiology, 2012, 53(12): 2060-2072.[17]He X, Zhu L, Wassan G M, et al. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171[J]. Molecular Plant Pathology, 2018, 19(4): 896-908.[18]张海鹏, 郭娜, 牛景萍, 等. 大豆品种郑97196对疫霉根腐病的抗性遗传分析及基因定位[J]. 大豆科学, 2016, 35(3): 373-379. (Zhang H P, Guo N, Niu J P, et al. Genetic analysis of resistance to Phytophthora sojae and mapping of resistance gene in soybean cultivar Zheng 97196[J]. Soybean Science, 2016, 35(3): 373-379.[19]Tyler B M. Phytophthora sojae: Root rot pathogen of soybean and model oomycete[J]. Molecular Plant Pathology, 2007, 8(1): 1-8.[20]Berens M L, Berry H M, Mine A, et al. Evolution of hormone signaling networks in plant defense[J]. Annual Review of Phytopathology, 2017, 55:401-425.[21]Pieterse C M, Leon-Reyes A, van der Ent S, et al. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology, 2009, 5(5): 308-316.[22]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43:205-227.[23]Zhang X, Bao Y, Shan D, et al. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice[J]. Plant Physiology, 2018, 177(1): 352-368.[24]Subramanian B, Gao S, Lercher M J, et al. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research, 2019, 47(W1): W270-W275.[25]Gu Z, Cavalcanti A, Chen F C, et al. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast[J]. Molecular Biology and Evolution, 2002, 19(3): 256-262.[26]Dorrance A E, Schmitthenner A F. New sources of resistance to Phytophthora sojae in the soybean plant introductions [J]. Plant Disease, 2000, 84(12): 1303-1308.[27]Hou X, Lee L Y, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19(6): 884-894.[28]Liu L, Sonbol F M, Huot B, et al. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity[J]. Nature Communications, 2016, 7:13099.[29]Kazan K, Manners J M. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1): 22-31.[30]Ju L, Jing Y, Shi P, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis[J/OL]. The New Phytologist[2019-03-22]. DOI: https://doi.org/10.1111/nph.15757.[31]Blanc G, Barakat A, Guyot R, et al. Extensive duplication and reshuffling in the Arabidopsis genome[J]. The Plant Cell, 2000, 12(7): 1093-1101.[32]Schlueter J A, Dixon P, Granger C, et al. Mining EST databases to resolve evolutionary events in major crop species[J]. Genome, 2004, 47(5): 868-876.[33]Wang X, Shi X, Hao B, et al. Duplication and DNA segmental loss in the rice genome: Implications for diploidization[J]. The New Phytologist, 2005, 165(3): 937-946.[34]Sun Q, Wang G, Zhang X, et al. Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes[J]. Scientific Reports, 2017, 7: 42418.[35]Saha G, Park J I, Kayum M A, et al. A genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa[J]. Frontiers in Plant Science, 2016, 7: 936.[36]Yang D L, Yao J, Mei C S, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19): E1192-E1200.[37]Ye H, Du H, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291-305.[38]Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2): 128-136.[39]Shine M B, Yang J W, El-Habbak M, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean[J]. The New Phytologist, 2016, 212(3): 627-636.[40]Zhang C, Gao H, Li R, et al. GmBTB/POZ, a novel BTB/POZ domain-containing Nucleus protein, positively regulates the response of soybean to Phytophthora sojae infection[J]. Molecular Plant Pathology, 2019, 20(1): 78-91.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:国家重点研发计划(2017YFD0101500);转基因生物新品种培育重大专项(2016ZX08004002);现代农业产业技术体系建设专项(CARS-004-PS10);中央高校基本科研业务费专项资金(KYT201801,Y0201700146);长江学者和创新团队发展计划(PCSIRT_17R55);江苏省现代作物生产协同创新中心。第一作者简介:黄建丽(1994-),女,硕士,主要从事大豆分子遗传育种研究。E-mail: 2017101136@njau.edu.cn。通讯作者:郭娜(1984-),女,博士,副教授,主要从事大豆分子遗传研究。E-mail: guona@njau.edu.cn;邢邯(1963-),男,博士,教授,主要从事菜用大豆育种与大豆分子遗传研究。E-mail: hanx@njau.edu.cn。

更新日期/Last Update: 1900-01-01