[1]柏梦焱,袁珏慧,孙嘉丰,等.基于CRISPR-Cas9基因编辑技术创制大豆gmnark超结瘤突变体[J].大豆科学,2019,38(04):525-532.[doi:10.11861/j.issn.1000-9841.2019.04.0525]
 BAI Meng-yan,YUAN Jue-hui,SUN Jia-feng,et al.Generation ofgmnarkMutant with SupernodulationviaCRISPR-Cas9 in Soybean[J].Soybean Science,2019,38(04):525-532.[doi:10.11861/j.issn.1000-9841.2019.04.0525]
点击复制

基于CRISPR-Cas9基因编辑技术创制大豆gmnark超结瘤突变体

参考文献/References:

[1]Collier R, Tegeder M. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export[J]. The Plant Journal, 2012, 72(3): 355-367.

[2]Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant Soil, 2008, 311(1-2): 1-18.
[3]Oldroyd G E, Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology, 2008, 59: 519-546.
[4]Oldroyd G E, Murray J D, Poole P S, et al. The rules of engagement in the legume-rhizobial symbiosis[J]. Annual Review of Genetics, 2012, 45: 119-144.
[5]Brett J F, Arief I, Satomi H, et al. Molecular analysis of legume nodule development and autoregulation[J]. Journal of Integrative Plant Biology, 2010, 52 (1): 61-76.
[6]Okamoto S, Shinohara H, Mori T, et al. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communication, 2013, 4: 2191.
[7]Reid D E, Ferguson B J, Gresshoff P M, et al. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation[J]. Molecular Plant-Microbe Interactions, 2013, 24(5): 606-618.
[8]Searle I R, Men A E, Laniya T S, et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase[J]. Science, 2003, 299(5603): 109-112.
[9]Sasaki T, Suzaki T, Soyano T, et al. Shoot- derived cytokinins systemically regulate root nodulation[J]. Nature Communication, 2014, 5: 4983.
[10]Daniela T, Zhe Y, Dennis B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411): 233-236.
[11]Takahara M, Magori M, Soyano T, et al. Too much love, a novel Kelch repeat-containing F-box protein, functions in the long- distance regulation of the legume-Rhizobiumsymbiosis[J]. Plant Cell Physiology, 2013, 54(4): 433-447.
[12]Ogawa M, Shinohara H, Sakagai Y, et al.ArabidopsisCLV3 peptide directly binds CLV1 ectodomain[J]. Science, 2008, 319(5861): 294.
[13]Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR/Cas9 system[J]. Nature Protocols, 2013, 8(11): 2281-2308.
[14]Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10): 1229-1232.
[15]Ma X L, Zhang Q, Zhu Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants[J]. Molecular Plant, 2015, 8(8): 1274-1284.
[16]Burgess. Technology: A CRISPR/Cas9 genome editing tool[J]. Nature Reviews Genetics, 2013, 14(2): 80.
[17]Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 2013, 31(9): 822-826.
[18]Miao J, Guo D, Zhang J, et al. Targeted mutagenesis in rice using CRISPR-Cas system[J]. Cell Research, 2013, 23(10): 1233-1236.
[19]Duan J, Lu G, Xie Z, et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome[J]. Cell Research, 2014, 24(8): 1009-1012.
[20]Liang Z, Zhang K, Chen K, et al. Targeted mutagenesis inZea maysusing TA1LENs and the CRISPR[J]. Journal of Genetics and Genomics, 2014, 41(2): 63-68.
[21]Masafumi M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice[J]. Plant Cell Reports, 2015, 34(10): 1807-1815.
[22]Sun Y, Zhang X, Wu C, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-rediated homologous recombination of acetolactate synthase[J]. Molecular Plant, 2016, 9(4): 628-631.
[23]Jacobs T B, LaFayette P R, Schmitz R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnology, 2015, 15(1): 16.
[24]Du H, Zeng X, Zhao M, et al. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9[J]. Journal of Biotechnology, 2016, 217: 90-97.
[25]Kanazashi Y, Hirose A, Takahashi I, et al. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA[J]. Plant Cell Reports, 2018, 37(3): 553-563.
[26]Song S, Hou W, Godo I, et al. Soybean seeds expressing feedback-insensitive cystathionine gamma- synthase exhibit a higher content of methionine[J]. Journal of Experimental Botany, 2013, 64(7), 1917-1926.
[27]Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots[J]. PLoS One, 2015, 10(8): e0136064.
[28]Tang F, Yang S, Liu J, et al. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported[J]. Plant Physiology, 2016, 170(1): 26-32.
[29]Fang Y, Tyler B M. Efficient disruption and replacement of an effector gene in the oomycete P hytophthora sojae using CRISPR/Cas9[J]. Molecular Plant Pathology, 2016, 17(1): 127-139.
[30]Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean[J]. Plant Biotechnology Journal, 2018, 16(1): 176-185.
[31]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
[32]Miyahara A, Hirani T A, Oakes M, et al. Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatasesin vitro[J]. Journal of Biological Chemistry, 2008, 283(37): 25381-25391.
[33]Liu L, Lei X L, Huang G Z, et al. Influences of mechanical sowing and transplanting on nitrogen accumulation,distribution and C/N of hybrid rice cultivars[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 831-844.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2019-02-25

基金项目:国家十三五重大研发计划(2016YFD0100700)。
第一作者简介:柏梦焱(1993-),男,硕士,主要从事CRISPR-Cas9技术研发与分子育种研究。E-mail:461326458@qq.com。
通讯作者:关跃峰(1981-),男,博士,教授,主要从事大豆碳氮代谢调控及基因编辑研究。E-mail:guan@fafu.edu.cn。

更新日期/Last Update: 2019-07-25