[1]吴艳,侯智红,程群,等.SPL转录因子的研究进展[J].大豆科学,2019,38(02):304-310.[doi:10.11861/j.issn.1000-9841.2019.02.0304]
 WU Yan,HOU Zhi-hong,CHENG Qun,et al.Research Progress of SPL Transcription Factor[J].Soybean Science,2019,38(02):304-310.[doi:10.11861/j.issn.1000-9841.2019.02.0304]
点击复制

SPL转录因子的研究进展

参考文献/References:

[1]Peter H, Joachim K, Wolf-Ekkehard L, et al. Bracteomania an inflorescence amomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus[J]. The European Molecular Biology Organization Journal, 1992, 11(4): 1239-1249.

[2]Klein J, Saedler H, Huijser P. A new family of proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular & General Genetics, 1996, 250(1): 7-16.
[3]Guillermo H, Susanne H, Klaus N, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: A novel gene involved in the transition[J]. The Plant Journal, 1997, 12(2): 367-377.
[4]Xu M L, Hu T Q, Zhao J F, et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana[J]. PLoS Genetic, 2016, 12(8): e1006263.
[5]Yu Z X, Wang L J, Zhao B, et al. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors[J]. Molecular Plant, 2015,8(1): 98-110.
[6]Guillermo C, Susanne H, Joachin K, et al. Molecular characterization of the Arabidopsis SBP-box genes[J]. Gene, 1999, 237(1): 91-104.
[7]Eriksson M, Moseley J L, Tottey S, et al. Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes[J]. Genetics, 2004, 168(2): 795-807.
[8]Guo A Y, Zhu Q H, Gu X C, et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family[J]. Gene, 2008,418(1-2): 1-8.
[9]Wu Y W, Ke Y Z, Wen J, et al. Evolution and expression analyses of the MADS-box gene family in Brassica napus[J]. Public Library of Science One, 2018,13(7): e0200762.
[10]Matthew W R, Brenda J R, Lee P L, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110: 513-520.
[11]Wang S K, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quanlity[J]. Nature Genetics, 2015, 47(8): 1-6.
[12]Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yeild in soybean plants via the manipulation of GmmiR156[J]. Plant Biotechnol Journal, 2018,10:1-13.
[13]Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759.
[14]Ayako Y, Wu M F, Li Y, et al. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17(2): 268-278.
[15]Xie K B, Wu C Q, Xiong L Z. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and micro-RNA156 in rice[J]. Plant Physiology, 2006, 142(1): 280-293.
[16]Rajiv K T, Ridhi G, Sweta K, et al. Genomic organization phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean[J]. Development Genes and Evolution, 2017, 227(2):101-119.
[17]Cao D, Li Y, Wang J, et al. GmmiR156 overexpression delay flowering time in soybean[J]. Plant Molecular Biology, 2015, 89(4-5): 353-363.
[18]Lu M C, Liu Y Q, Chen D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant, 2017, 10(5): 735-748.
[19]Xu M L, Hu T Q, Zhao J F, et al. Developmental functions miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL) genes in Arabidopsis thaliana[J]. Public Library of Science Genetics, 2016, 12(8): e4006263.
[20]Meenu S P, Ma S S, Tessa M B, et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity[J]. Public Library of Science, 2013, 9(3): e1003235.
[21]Yamasaki H, Hayashi M, Fukazawa M, et al. SQUAMOSA promoter binding protein like-7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(1): 347-361.
[22]Cui L G, Shan J X, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plant[J]. The Plant Journal,2014, 80(6): 1108-1117.
[23]Gao R M, Wang Y, Gruber M Y, et al. MiR156/SPL10 modulate lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS 79[J]. Frontier in Plant Science, 2018, 8: 2226.
[24]Yue E K, Li C, Li Y, et al. MiR529a modulates panicle architeeture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa)[J]. Plant Molecular Biology, 2017, 94(4-5): 469-480.
[25]Liu Q, Shen G Z, Peng K Q, et al. The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f[J]. Journal of Integrative Plant Biology, 2015, 57(10): 819-829.
[26]Tang M, Zhou C, Meng L, et al. Overexpression of OsSPL9 enhances accumulation of Cu in rice grain and improves its digestibility and metabolism[J]. Journal of Genetics and Genomics, 2016, 43(11): 673-676.
[27]Lan T, Zhang S, Liu T T, et al. Fine mapping and candidate identification of SST, a gene controlling seeding salt tolerance in rice (Oryza sativa L.)[J]. Euphytica, 2015, 205(1): 269-274.
[28]Si L Z, Chen J Y, Huang X H, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetic, 2016, 48(4): 447-456.
[29]Wang L, Zhang Q F. Boosting rice yield by fine-tuning SPL gene expression[J]. Cell Press, 2017, 22(8): 643-646.
[30]Wang S K, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetic, 2015,47(8): 949-954.
[31]Silva J, Silva E,Azevedo M, et al. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. The Plant Journay,2014, 78(4): 604-618.
[32]Fang Y, Spector D L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants[J]. Current Biology, 2007,17(9): 818-823.
[33]Liu N, Tu L L, Wang L C, et al. MicroRNA157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BioMed Central Plant Biology Plant Biology, 2017, 17: 7-21.
[34]Long J M, Liu C Y, Feng M Q, et al. MiR156-SPL modules regulate induction of somatic embryogenesis in citrus callus[J]. Journal of Experimental Botany, 2018, 69(12):2979-2993.
[35]Poethig R S. Vegetative phase change and shoot maturation in plants[J]. Current Topics in Developmental Biology, 2013, 105: 125-152.
[36]Wu G, Mee Y P, Susan R C, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759.
[37]Stefan S, Arne V G, Nora B, et al. The microRNA regulated SBP-box gene SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1-2):183-195.
[38]Burle I, Dean C. The timing of developmental transitions in plants[J]. Cell, 2006,125(4): 655-664.
[39]Wang J W, Czech B, Weigel D. MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
[40]Madhuri G, Rainer P B, Susanne H, et al. The miRNA156/157 recognition element in the 3’UTR of the Arabidopsis SBP-box gene SPL3 prevents early flowering by transcriptional inhibition in seedlings[J]. The Plant Journal, 2007, 49(4): 683-693.
[41]Jung J H, Lee H J, Ryu J Y, et al. SPL3/4/5 integrate development aging and photoperiod signals into the FT-FD module in Arabidopsis flowering[J]. Molecular Plant, 2016, 9(12): 1647-1659.
[42]Jae H J, Ju Y, Pil S, et al. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. The Plant Journal, 2012,69(4):577-588.
[43]Wang J W, Rebecca S, Benjamin C, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. The Plant Cell, 2008, 20(5): 1231-1243.
[44]Wang L, Sun S, Jin J, et al. Coordinated regulation of vegetative and reproductive branching in rice[J]. Proceedings of the National Academy of Sciences, 2015, 112(50):15504-15509.
[45]Gao R, Gruber M Y, Amyot L, et al. SPL13 regulates shoot branching and flowering time in Medicago sativa[J]. Plant Molecular Biology, 2018, 96(1-2): 119-133.
[46]Maria A M, Lisa C H, Rogar W K, et al. Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes & Development, 2018, 11(5): 616-829.
[47]Wang S, Wu K, Yuan Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetic, 2012, 44(8): 950-954.
[48]Briggs W R, Huala E. Blue-light photoreceptors in higher plants[J]. Annual Review of Cell and Developmental Biology, 1999, 15: 33-62.
[49]Maike R, Oliver Z, Heinz S, et al. SBP-domain transcription factors as possible effectors of cryptochrome mediated blue light signaling in the moss Physcomitrella patens[J]. Planta, 2008, 227(2): 505-515.
[50]Evans M M, Poethiq R S. Gibberellins promote vegetative phase change and reproductive maturity in rice[J]. Plant Physiology, 1995, 108(2): 475-487.
[51]Murase K, Hirano Y, Sun T P, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221): 459-463.
[52]Zhang Y, Stefan S, Heinz S. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(3): 429-439.
[53]Jae J K, Jeong H L, Kim W H, et al. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis1[J]. Plant Physiology, 2012, 159(1): 461-478.
[54]Chao L M, Liu Y Q, Chen D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant, 2017, 10(5): 735-748.
[55]Stief A, Altmann S, Hoffmann K, et al. Arabidopsis miR156 regulated tolerance to recurring enviromental stress through SPL transcription factors[J]. Plant Cell, 2014, 26(4): 1792-1807.
[56]Hou H, Li J, Gao M, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. Public Library of Science One, 2013, 8(3): e59358.
[57]Sunkar R, Zhu J K. Novel and stress-regulated microRNA and other small RNA from Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2001-2019.
[58]Cui L G , Shan J X , Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plant[J]. The Plant Journal, 2014, 80(6): 1108-1117.
[59]Ning K, Chen S, Huang H J, et al. Molecular characterization and expression analysis of the SPL gene family with BpSPL9 transgenic lines found to confer tolerance to abiotic stress in Betula platyphylla Suk[J]. Plant Cell Tissue and Organ Culture, 2017, 130(3): 469-481.
[60]Kropat J, Tottey S, Birkenbihl R P, et al. A regulator of nutritional copper signaling in Chlamydomonasis is an SBP domain protein that recognize the GTAC core of copper response element[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(51): 18730-18735.
[61]Sommer F, Kropat J, Malasarn D. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains[J]. Plant Cell, 2010, 22(12): 4098-4113.
[62]Desai K, Sullards M C, Allegood J, et al. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis[J]. Biochimica et Biophysica Acta, 2002, 1585(2): 188-192.
[63]Wang J, Zhou L, Shi H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028.
[64]Hou H M,Ya Q, Wang X P, et al. A SBP-box gene VpSBP5 from Chinese wild Vitis species responds to Erysiphe necator and defense signaling molecules[J]. Plant Molecular Biology Reporter, 2013, 31(6): 1261-1270.
[65]Hou H, Li J, Gao M, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. Public Library of Science One, 2013, 8(3): e59358.
[66]Stacy A J, Jill C P. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis[J]. Molecular Phylogenetical and Evolution, 2014, 73(1): 129-139.
[67]Shikata M, Koyama T, Misuda N M, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant Cell Physiology, 2009, 50(12): 2133-2145.

相似文献/References:

[1]朱命喜,刘洋,吴琼,等.大豆SBP转录因子家族的预测分析[J].大豆科学,2011,30(02):177.[doi:10.11861/j.issn.1000-9841.2011.02.0177]
 ZHU Ming-xi,LIU Yang,WU Qiong,et al.Forecasting Analysis of SBP Transcription Factor Families in Soybean[J].Soybean Science,2011,30(02):177.[doi:10.11861/j.issn.1000-9841.2011.02.0177]
[2]赵艳,刘晓鑫,张庆林,等.大豆种子特异性启动子研究进展[J].大豆科学,2010,29(01):151.[doi:10.11861/j.issn.1000-9841.2010.01.0151]
 ZHAO Yan,LIU Xiao-xin,ZHANG Qing-lin,et al.Advances of Studies on Seed-specific Promoters of Soybean[J].Soybean Science,2010,29(02):151.[doi:10.11861/j.issn.1000-9841.2010.01.0151]
[3]刘冬冬,王洋,柏锡.大豆Glyma08g02580及其同源蛋白的生物信息学分析[J].大豆科学,2014,33(05):648.[doi:10.11861/j.issn.1000-9841.2014.05.0648]
 LIU Dong-dong,WANG Yang,BAI Xi.Bioinformatics Analysis on Transcription Factor Glyma08g02580 and Its Homology Proteins[J].Soybean Science,2014,33(02):648.[doi:10.11861/j.issn.1000-9841.2014.05.0648]
[4]刘德泉,郭文云,何则铭,等.大豆胚发育期酵母双杂文库的构建及与bHLH转录因子互作蛋白的筛选[J].大豆科学,2015,34(05):789.[doi:10.11861/j.issn.1000-9841.2015.05.0789]
 LIU De-quan,GUO Wen-yun,HE Ze-ming,et al.Yeast Two-hybrid cDNA Library Construction of Soybean Embryo Developmental Phase and Screening of Proteins Interacting with Soybean bHLH Transcription Factor[J].Soybean Science,2015,34(02):789.[doi:10.11861/j.issn.1000-9841.2015.05.0789]
[5]成舒飞,端木慧子,陈超,等.大豆MYB转录因子的全基因组鉴定及生物信息学分析[J].大豆科学,2016,35(01):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
 CHENG Shu-fei,DUANMU Hui-zi,CHEN Chao,et al.Whole Genome Identification of Soybean MYB Transcription Factors and Bioinformatics Analysis[J].Soybean Science,2016,35(02):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
[6]郭文雅,崔艳梅,喻德跃,等.野生大豆GsAP1基因的克隆及功能分析[J].大豆科学,2016,35(06):919.[doi:10.11861/j.issn.1000-9841.2016.06.0919]
 GUO Wen-ya,CUI Yan-mei,YU De-yue,et al.Cloning and Functional Analysis of GsAP1 in Wild Soybean[J].Soybean Science,2016,35(02):919.[doi:10.11861/j.issn.1000-9841.2016.06.0919]
[7]吴艳,侯智红,程群,等.大豆GmSPL3基因家族功能初探[J].大豆科学,2019,38(05):694.[doi:10.11861/j.issn.1000-9841.2019.05.0694]
 WU Yan,HOU Zhi-hong,CHENG Qun,et al.Preliminary Study on the Function of GmSPL3 Gene Family in Soybean[J].Soybean Science,2019,38(02):694.[doi:10.11861/j.issn.1000-9841.2019.05.0694]
[8]孙彦波,李忠峰,王俊,等.基于TILLING技术筛选大豆GmAGL15基因突变体[J].大豆科学,2019,38(06):906.[doi:10.11861/j.issn.1000-9841.2019.06.0906]
 SUN Yan-bo,LI Zhong-feng,WANG Jun,et al.Screening AGL15Mutant in Soybean by TILLING[J].Soybean Science,2019,38(02):906.[doi:10.11861/j.issn.1000-9841.2019.06.0906]
[9]张蕾,陈昕涛,白丽娟,等.大豆bZIP转录因子基因GmbZIP33的克隆与功能分析[J].大豆科学,2023,42(05):524.[doi:10.11861/j.issn.1000-9841.2023.05.0524]
[10]邢馨竹,杨占武,杜 汇,等.转录因子GmPTF1促进大豆结瘤固氮功能研究[J].大豆科学,2023,42(06):653.[doi:10.11861/j.issn.1000-9841.2023.06.0653]

备注/Memo

收稿日期:2018-11-21

基金项目:国家自然科学基金面上项目(31771815,31701445,31801384)。
第一作者简介:吴艳(1993-),女,硕士,主要从事大豆重要性状遗传和功能基因研究。E-mail:15367613473@163.com。
通讯作者:刘宝辉(1964-),男,教授,博导,主要从事大豆重要性状遗传和功能基因研究。E-mail:liubh@iga.ac.cn。

更新日期/Last Update: 2019-04-01