[1]郭文雅,崔艳梅,喻德跃,等.野生大豆GsAP1基因的克隆及功能分析[J].大豆科学,2016,35(06):919-927.[doi:10.11861/j.issn.1000-9841.2016.06.0919]
 GUO Wen-ya,CUI Yan-mei,YU De-yue,et al.Cloning and Functional Analysis of GsAP1 in Wild Soybean[J].Soybean Science,2016,35(06):919-927.[doi:10.11861/j.issn.1000-9841.2016.06.0919]
点击复制

野生大豆GsAP1基因的克隆及功能分析

参考文献/References:

[1]Irish V F, Sussex I M. Function of the APETALA1- gene during Arabidopsis- floral development[J]. Plant Cell, 1990(2): 741-754.

[2]Chen Z, Ye M, Su X, et al. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar[J]. Transgenic Research, 2015, 24: 705-715.
[3]Pandey D K, Chaudhary B. Domestication-driven Gossypium profilin 1(GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression[J]. BMC plant biology, 2016, 16(1): 112.
[4]Mandel M A, GustafsonBrown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360: 273-277.
[5]Bowman J L, Alvarez J, Weigel D, et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes[J]. Development, 1993, 119: 721-743.
[6]Gustafson-Brown C, Savidge B, Yanofsky M F. Regulation of the Arabidopsis floral homeotic gene APETALA1[J]. Cell, 1994, 76(1): 131-43.
[7]Mandal M A, Yanofsky M F. A gene triggering flower formation in Arabidopsis[J]. Nature, 1995, 377(6549): 522-524.
[8]Thomas J. Molecular and genetic mechanisms of floral control[J]. Plant Cell, 2004,16: 1-17.
[9]Suárez-López P, Wheatley K, Robson F, et al. Constans mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410:1116-1120.
[10]Gocal G F , King R W, Blundell C A, et al. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis[J]. Plant Physiology, 2001, 125(4): 1788-1801.
[11]Shimada S, Ogawa T, Kitagawa S, et al. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T.[J]. Plant Journal, 2009, 58(4): 668-681.
[12]Chi Y J, Huang F, Liu H C, et al. An APETALA1like gene of soybean regulates flowering time and specifies floral organs[J]. Journal of Plant Physiology, 2011, 168(18): 2251-2259.
[13]Kotoda N, Wada M, Kusaba S, et al. Overexpression of MdM-ADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis[J]. Plant Science, 2002, 162(5): 679-687.
[14]Chen M K, Lin I C, Yang C H. Functional analysis of three lily (Lilium longiflorum).APETALA1-like MADS box genes in regulating floral transition and formation[J]. Plant and Cell Physiology, 2008, 49: 704-717.
[15]Pena L, Martin-Trillo M, Juarez J, et al. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time[J]. Nature Biotechnology, 2001, 19(3): 263-267.
[16]Qu G Z, Zheng T, Liu G, et al. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco[J]. PLoS One,2013, 8(5): e63398.
[17]Huang H, Wang S, Jiang J, et al. Over expression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla×Betula pendula[J] . Physiologia plantarum, 2014, 151(4): 495-506.
[18]杨郁文, 张保龙. 花分生组织决定基因APETALA1转化油菜[J]. 江苏农业学报, 2007, 23(6): 564-567. (Yang Y W, Zhang B L. Flower meristem gene APETALA1 transformed into rape[J]. Jiangsu Agricultural Journal, 2007, 23(6): 564 -567.)
[19]Chen Z, Ye M X, Su X X, et al. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar[J].Transgenic Research, 2015, 24(4): 705-715.
[20]Fornara F, Parenicova L, Falasca G, et al. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes[J]. Plant Physiology, 2004, 135(4): 2207-2219.
[21]Liu Y X, Song H W, Liu Z L, et al. Molecular characterization of loquat EjAP1 gene in relation to flowering[J]. Plant Growth Regulation, 2013, 70 (3): 287-296.
[22]Kim S, Koh J, Ma H, et al. Sequence and expression studies of A, B, and E.class MADS-box homologues in Eupomatia (Eupomatiaceae): Support for the bracteates origin of the calyptra[J]. International Journal of Plant Sciences, 2005, 166(2): 185-198.
[23]Zhang L, Xu Y, Ma R. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica)[J]. Journal of Genetics and Genomics, 2008, 35: 365-372.
[24]刘志雄, 王莹, 吕小蒙, 等. 日本晚樱花器官特征基因-ClAP1的克隆与表达分析[J]. 园艺学报, 2010, 37(4): 649-654. (Liu Z X, Wang Y, Lyu X M, et al. Cloning and expression analysis of a floral organ identity gene ClAP1 from Prunus lannesiana[J]. Acta Horticulturae Sinica, 2010, 37(4): 649 -654.)
[25]Tsaftaris A S, Pasentsis K, Iliopoulos, et al. Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression[J]. Plant Science, 2004, 166(5): 1235-1243.
[26]Pillitteri L J, Lovatt C J, Walling L L. Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck ‘Washington’[J]. Journal of the American Society for Horticultural Science, 2004, 129(6): 846-856.
[27]Kohler C, Hennig L, Spillane C, et al. The Polycomb-guoup protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1[J]. Genes & Development, 2003, 17: 1540-1553.
[28]Buchner P, Boutin J P. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea(Pisum sativum) during development[J]. Plant Molecular Biology, 1998, 38(6): 1253-1255.
[29]Pabón Mora N, Ambrose B A, Litt A, et al. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity and fruit development[J]. Plant Physiology, 2012, 158(4): 1685-1704.
[30]Tian Y F, Yuan X Y, Jiang S H, et al. Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi)[J]. Chinese Journal of Biotechnology, 2013, 29(2): 203-13.
[31]罗聪, 何新华, 陈虎, 等. 芒果AP1同源基因的克隆及其生物信息学分析[J]. 基因组学与应用生物学, 2009, 28(5): 851-858. (Luo C, He X H, Chen H, et al. Cloning and bioinformatics analysis of AP1 homologous gene from mango[J]. Genomics and Applied Biology, 2009, 28(5): 851-858.
[32]安利忻, 刘荣维. 花分生组织决定基因-AP1-转化矮牵牛的研究[J]. 植物学报, 2001, 43(1): 63-66. (An L X, Liu R W. Flower meristem identity gene AP1 transformation of Petunia[J]. Acta Botanica Sinica, 2001, 43(1): 63-66.)
[33]吕山花. 太行花MADS-box基因克隆、表达模式及功能分析[D]. 北京: 中国科学院植物研究所, 2006. (Lyu S H. Taihangia MADS-box gene cloning, expression pattern and functional analysis[D]. Beijing: Academy of Sciences Chinese, 2006.
[34]Fernando D D, Zhang S L. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana[J]. Development Genes and Evolution, 2006, 216(1): 19-28.
[35]Li Q, Wang Y, Wang F, et al. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon[J]. Plant Physiology, 2016.
[36]Zheng T, Li S, Zang L, et al. Overexpression of two PsnAP1 genes from Populus simonii×P. nigra causes early flowering in transgenic tobacco and Arabidopsis[J]. PLoS One, 2013, 9(10): e111725.

相似文献/References:

[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
 GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(06):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(06):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(06):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
 WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(06):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
 CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(06):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
 ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(06):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
 XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(06):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
 HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(06):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
 WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(06):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
 CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(06):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]

备注/Memo

基金项目:国家自然科学基金(31571688)。

第一作者简介:郭文雅(1985-),女,硕士,主要从事大豆遗传育种研究。E-mail:cat3.0@163.com。
通讯作者:黄方(1977-),女,博士,教授,主要从事大豆遗传育种研究。E-mail:fhuang@njau.edu.cn。

更新日期/Last Update: 2016-12-09