[1]牛宁,李占军,金素娟,等.大豆应答逆境胁迫的蛋白质组学研究进展[J].大豆科学,2016,35(02):330-336.[doi:10.11861/j.issn.1000-9841.2016.02.0337]
 NIU Ning,LI Zhan-jun,JIN Su-juan,et al.Advances on Proteomics of Soybean under Stress[J].Soybean Science,2016,35(02):330-336.[doi:10.11861/j.issn.1000-9841.2016.02.0337]
点击复制

大豆应答逆境胁迫的蛋白质组学研究进展

参考文献/References:

[1]Yin X J, Sakata K, Komatsu S.Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress [J]. Journal of Proteome Research, 2014, 13(12): 5618-5634.

[2]Mustafa G, Komatsu S.Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress [J].Frontiers in Plant Science, 2014, 5: 627.
[3]Oh M W, Nanjo Y, Komatsu S. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress[J]. Frontiers in Plant Science, 2014, 5: 559.
[4]Oh M W, Nanjo Y, Komatsu S. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress [J]. Protein and Peptide Letters, 2014, 21(9): 911-947.
[5]Yin X J, Sakata K, Nanjo Y, et al. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques [J].Journal of Proteomics, 2014, 106: 1-16.
[6]Oh M W, Nanjo Y, Komatsu S. Identification of nuclear proteins in soybean under flooding stress using proteomic technique [J]. Protein and Peptide Letters, 2014, 21(5): 458-467.
[7]Nanjo Y, Jang H Y, Kim H S, et al.Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes [J]. Phytochemistry, 2014, 106: 25-36.
[8]Komatsu S, Nakamura T, Sugimoto Y, et al. Proteomic and metabolomic analyses of soybean root tips under flooding stress [J].Protein and Peptide Letters, 2014, 21(9): 865-884.
[9]Komatsu S, Han C, Nanjo Y, et al.Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding[J].Journal of Proteome Research, 2013, 12 (11): 4769-4784.
[10]Komatsu S, Nanjo Y, Nishimura M.Proteomic analysis of the flooding tolerance mechanism in mutant soybean[J]. Journal of Proteomics, 2013, 79: 231-250.
[11]Nanjo Y, Nakamura T, Komatsu S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics[J]. Journal of Proteome Research, 2013, 12 (11): 4785-4798.
[12]Khatoon A, Rehman S, Oh W M, et al.Analysis of response mechanism in soybean under low oxygen and flooding stresses using gel-base proteomics technique[J]. Molecular Biology Reports, 2012, 39:10581-10594.
[13]Salavati A, Khatoon A, Nanjo Y, et al.Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding[J]. Journal of Proteomics, 2012, 75: 878-893.
[14]Khatoon A, Rehman S, Hiraga S, et al. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress[J]. Journal of Proteomics, 2012, 75: 5706-5723.
[15]Komatsu S, Makino T, Yasue H. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants[J].PLoS One, 2013, 8(6): e65301.
[16]Nanjo Y, Skultety L, Uvácˇková L, et al.Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings[J]. Journal of Proteome Research, 2012, 11(1): 372-385.
[17]Khatoon A, Rehman S, Salavati A, et al. A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress[J].Amino Acids, 2012, 43:2513-2525.
[18]Alam I, Sharmin S A, Kim K H, et al. Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean[J]. Plant Soil, 2011, 346:45-62.
[19]Komatsu S, Thibaut D, Hiraga S, et al. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots[J]. Plant Molecular Biology, 2011, 77:309-322.
[20]Komatsu S, Kuji R, Nanjo Y, et al. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques[J].Journal of Proteomics, 2012, 77: 531-560.
[21]Komatsu S, Yamamoto A, Nakamura T, et al. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques[J]. Journal of Proteome Research, 2011, 10: 3993-4004.
[22]Mohammadi P P, Moieni A, Hiraga S, et al. Organ-specific proteomic analysis of drought-stressed soybean seedlings[J] Journal of Proteomics, 2012, 75: 1906-1923.
[23]Gil-Quintana E, Larrainzar E, Seminario A, et al. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean[J]. Journal of Experimental Botany, 2013, 64(8): 2171-2182,?
[24]Hakeem K R, Khan F, Chandna R, et al. Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype[J].Applied Biochemistry and Biotechnology, 2012, 168: 2309-2329.
[25]Ma H Y, Song L R, Shu Y J, et al.Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes[J]. Journal of Proteomics, 2012, 75: 1529-1546.
[26]Ma H Y, Song L R, Huang Z G, et al. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress [J]. EuPA Open Proteomics, 2014, 4: 40-57.[27]Ahsan N, Donnart T, Nouri M Z, et al. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach[J]. Journal of Proteome Research, 2010, 9(8): 4189-4204.[28]Wang L Q, Ma H, Song L R, et al. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress[J]. Journal of Proteomics, 2012, 75: 2109-2127.[29]Tian X, Liu Y, Huang Z G, et al. Comparative proteomic analysis of seedling leaves of cold-tolerant and sensitive spring soybean cultivars[J]. Molecular Biology Reports, 2014, 42(3): 581-601.
[30]Swigonska S, Weidner S.Proteomic analysis of response to long-term continuous stress in roots of germinating soybean seeds[J]. Journal of Plant Physiology, 2013, 170: 470-479.
[31]Hossain Z, Hajika M, Komatsu S.Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress[J].Amino Acids, 2012, 43: 2393-2416.
[32]Hossain Z, Makino T, Komatsu S. Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean[J].Journal of Proteomics, 2012, 75(13): 4151-4164.
[33]Duressa D, Soliman K, Taylor R, et al. Proteomic analysis of soybean roots under aluminum stress[J]. International Journal of Plant Genomics, 2011, 282531.
[34]Chen Z J, Cui Q Q, Liang C Y, et al. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis[J].Proteomics, 2011, 11: 4648-4659.
[35]Galant A, Koester R P, Ainsworth E A, et al. From climate change to molecular response: Redox proteomics of ozoneinduced responses in soybean[J]. New Phytologist, 2012, 194: 220-229.
[36]Yang H, Huang Y P, Zhi H J, et al. Proteomicsbased analysis of novel genes involved in response toward soybean mosaic virus infection[J]. Molecular Biology Reports, 2011, 38:511-521.
[37]Wang Y, Yuan X Z, Hu H, et al. Proteomic analysis of differentially expressed proteins in resistant soybean leaves after Phakopsora pachyrhizi infection[J]. Journal of Phytopathol, 2012, 160:554-560.
[38]Zhang Y M, Zhao J M, Xiang Y, et al. Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae[J].Proteome Science, 2011, 9:52
[39]Timbo R V, Hermes-Lima M, Silva L P, et al. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae) [J]. PLoS One, 2014, 9(10): e109735.
[40]Liu D W, Chen L J, Duan Y X.Differential proteomic analysis of the resistant soybean infected by soybean cyst nematode, Heterodera glycines Race 3[J]. Journal of Agricultural Science, 2011, 3(4): 160-167.
[41]Fan R, Wang H, Wang Y L, et al. Proteomic analysis of soybean defense response induced by cotton worm (prodenia litura, fabricius) feeding[J].Proteome Science, 2012, 10:16.
[42]Schmutz J, Cannon S B,Schlueter J,et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463: 178-183.[43]Yu S, Zhang X, Guan Q, et al.Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L)[J].Biotechnology Letters, 2007, 29: 89-94.
[44]Feng L L, Han Y J, Liu G, et al. Overexpression of sedoheptulose1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants[J].Functional Plant Biology, 2007, 34: 822-834.
[45]Gupta A S, Webb R P, Holaday A S, et al.Overexpression of superoxide sismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutaseoverexpressing plants)[J]. Plant Physiology, 1993, 103: 1067-1073.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]刘春,麻浩,刘健晖,等.大豆蛋白质组学研究进展[J].大豆科学,2010,29(04):712.[doi:10.11861/j.issn.1000-9841.2010.04.0712]
 LIU Chun,MA Hao,LIU Jian-hui,et al.Advances in Soybean Proteomics[J].Soybean Science,2010,29(02):712.[doi:10.11861/j.issn.1000-9841.2010.04.0712]
[12]赫卫,姜振峰,赵琳,等.不同光长条件下大豆蛋白质组比较研究[J].大豆科学,2009,28(03):388.[doi:10.11861/j.issn.1000-9841.2009.03.0388]
 HE Wei,JIANG Zhen-feng,ZHAO Lin,et al.A Comparative Study on Soybean Leaf Proteomics under Different Photoperiod Treatments[J].Soybean Science,2009,28(02):388.[doi:10.11861/j.issn.1000-9841.2009.03.0388]

备注/Memo

基金项目:河北省自然科学基金(C2015106059)。

第一作者简介:牛宁(1980-),男,博士,助理研究员,主要从事大豆遗传育种与蛋白质组学研究。E-mail: niuning1980@163.com。
通讯作者:王玉岭(1957-),男,研究员,主要从事大豆遗传育种与栽培研究。E-mail: wangyuling0313@163.com。

更新日期/Last Update: 2016-04-04