WANG Yu-bin,LIU Wei,ZHANG Yan-wei,et al.Regulation Mechanism in Soybean Seedling Response to Salt Stress of Ethylene[J].Soybean Science,2022,41(05):580-587.[doi:10.11861/j.issn.1000-9841.2022.05.0580]
乙烯对大豆幼苗盐胁迫响应的调控机制研究
- Title:
- Regulation Mechanism in Soybean Seedling Response to Salt Stress of Ethylene
- 关键词:
- 大豆; 盐胁迫; 1-氨基环丙烷-1-羧酸(ACC); ROS积累; Na+/K+平衡
- Keywords:
- soybean; salt stress; 1-aminocyclopropane-1-carboxylic acid (ACC); ROS accumulation; Na+/K+ equilibrium
- 文献标志码:
- A
- 摘要:
- 为研究乙烯对大豆盐胁迫响应的调控作用,促进乙烯在大豆高效栽培中的应用,以耐盐大豆品种齐黄34为材料,采用水培的方法,外源添加乙烯合成前体1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)后进行NaCl胁迫处理,设置4种不同处理,测定盐处理对乙烯合成关键限速酶基因表达的影响,乙烯对盐胁迫下大豆幼苗形态建成、渗透调节系统和氧化还原系统的影响,分析乙烯对大豆抗盐的调控效应。结果显示:NaCl处理显著提高不同时间点乙烯合成关键限速酶基因GmACS1、GmACS2和GmACS6的表达,促进乙烯的释放;外源添加ACC可加速盐胁迫下大豆叶片衰老,降低地上部和地下部干物质和叶片叶绿素含量;提高植株地上部和地下部Na+、K+含量、地上部Na+/K+和MDA含量,降低脯氨酸含量;此外,外源添加ACC显著提高盐胁迫下大豆叶片O2?-释放和NADPH氧化酶GmRbohA和GmRbohB基因的表达,降低POD酶活性。研究结果表明乙烯通过调控ROS稳态以及Na+/K+平衡负调控大豆耐盐性。
- Abstract:
- In order to study the regulatory effects of ethylene on the salt stress response of soybean and promote the application of ethylene in high-efficiency soybean cultivation, the salt-tolerant soybean variety Qihuang 34 was used as experimental materials. We used the method of hydroponics, exogenous added of 1-aminocyclopropane-1-carboxylic acid (ACC) and then set NaCl stress treatment. The effects of salt treatment on the gene expression of key rate-limiting enzymes of ethylene synthesis, ethylene on the seedling morphogenesis, osmotic regulation system and oxidation-reduction system were measured to analyse the regulatory effect of ethylene on soybean salt resistance. The results showed that NaCl treatment significantly increased the expression of GmACS1,GmACS2 and GmACS6, the key rate-limiting enzymes of ethylene synthesis at different time points, promoted the evolution of ethylene. Under salt stress, exogenous ACC treatment accelerated the senescence of soybean leaves, decreased dry matter accumulation of shoots and roots, leaf chlorophyll content. Exogenous addition of ACC significantly increased the content of Na+, K+, Na+/K+ and MDA content, and decreased the content of proline under salt stress. In addition, exogenous addition of ACC significantly increased O2?- release and the expression of NADPH oxidase GmRbohA and GmRbohB genes in soybean leaves, but decreased POD enzyme activity under NaCl stress. The results showed that ethylene negatively regulated soybean salt tolerance by regulating ROS homeostasis and Na+/K+ equilibrium.
参考文献/References:
[1]XU Z L, ALI Z, XU L, et al. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean[J]. Scientific Reports, 2016, 6: 20366.[2]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. [3]YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217: 523-539.[4]张红, 董树亭. 玉米对盐胁迫的生理响应及抗盐策略研究进展[J]. 玉米科学, 2011, 19(1): 64-69. (ZHANG H, DONG S T. Research progress on the physiological and biochemistry responses of salt tolerance and strategies of salt resistance in maize[J]. Maize Science, 2011, 19(1): 64-69.)[5]SHABALA S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of Botany, 2013, 112(7): 1209-1221. [6]VAN Z E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.[7]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. [8]CAO W H, LIU J, HE X J, et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiology, 2007, 143(2): 707-719.[9]OLSON D C, WHITE J A, EDELMAN L, et al. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(12): 5340-5344. [10]QI J S, SONG C P, WANG B S, et al. Reactive oxygen species signalingand stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 2018, 60(9): 805-826.[11]MA L Y, ZHANG H, SUN L R, et al. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress[J]. Journal of Experiment Botany, 2012, 63(1): 305-317. [12]PENG J Y, LI Z H, WEN X, et al. Salt induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genetics, 2014, 10(10):e1004664.[13]JIANG C F, BELFIELD E J, CAO Y, et al. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis[J]. Plant Cell, 2013, 25(9): 3535-3552.[14]LI C H, WANG G, ZHAO J H, et al. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice[J]. Plant Cell, 2014, 26(6): 2538-2553. [15]CHANG C S, Wang B L, SHI L, et al. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate[J]. Journal of Plant Physiology, 2010, 167(14): 1152-1156. [16]张彦威, 刘国峰, 李伟, 等. 黄淮海地区大豆种质资源耐盐性鉴定[J]. 山东农业科学, 2018, 50(11): 33-36. (ZHAO Y W, LIU G F, LI W, et al. Identification on salt tolerance of soybean germplasms in Huang-Huai-Hai region[J]. Shandong Agricultural Sciences, 2018, 50(11): 33-36.)[17]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method[J]. Methods, 2001, 25(4): 402-408.[18]赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10):1-10. (ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress[J]. Biotechnology Bulletin, 2016,32(10):1-10.)[19]YANG C, MA B, HE S J, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165.[20]LIANG X, ABEL S, KELLER J A, et al. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1992, 89(22): 11046-11050. [21]刘友良,毛才良,汪良驹. 植物耐盐性研究进展[J]. 植物生理学通讯, 1987, 38(4): 1-7. (LIU Y L, MAO C L, WANG L J. Recent progress in studies on salinity tolerance in plants[J]. Plant Physiology Communications, 1987, 38(4): 1-7.)[22]谢崇波, 金谷雷, 徐海明, 等. 拟南芥在盐胁迫环境下 SOS 转录调控网络的构建及分析[J]. 遗传, 2010, 32(6): 639-646. (XIE C B, JIN G L, XU H M, et al. Construction and analysis of SOS pathway-related transcriptional regulatory network underlying salt stress response in Arabidopsis[J]. Hereditas, 2010,32(6): 639-646.)[23]SZABADOS L, SAVOURE A. Proline:A multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97. [24]REJEB K B, ABDELLY C, SAVOURE A. How reactive oxygen species and proline face stress together[J]. Plant Physiology, 2014, 80: 278-284.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]陈 昀,郑焕明,张 竞,等.以hemin为基础的物质联用缓解盐胁迫对大豆种子萌发的抑制[J].大豆科学,2013,32(05):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
CHEN Yun,ZHENG Huan-ming,ZHANG Jing,et al.Hemin-based Combinations of Exogenous Substances Alleviate the Inhibition of Soybean Seed Germination under Salt Stress[J].Soybean Science,2013,32(05):640.[doi:10.11861/j.issn.1000-9841.2013.05.0640]
[12]马淑英 尹田夫 袁鹰 刘德璞 刘艳芝.盐胁迫对大豆发育子叶愈伤组织的生化影响[J].大豆科学,1997,16(03):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
Ma ShuyingYin Tanfu Yua n YingLiu DepuLiu Ya nzhing.EFFECT OF SALT STRESS ON SOYBEAN COTYLEDON CALLUSTISSUE DEVELOPMENT[J].Soybean Science,1997,16(05):227.[doi:10.11861/j.issn.1000-9841.1997.03.0227]
[13]常汝镇,陈一舞,邵桂花,等.盐对大豆农艺性状及籽粒品质的影响[J].大豆科学,1994,13(02):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
[J].Soybean Science,1994,13(05):101.[doi:10.11861/j.issn.1000-9841.1994.02.0101]
[14]徐芬芬,楚婕妤,刘誉,等.盐胁迫对大豆种子萌发过程中吸水和水解酶活性的影响[J].大豆科学,2017,36(01):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
XU Fen-fen,CHU Jie-yu,LIU Yu,et al.Effects of Salt Stress on Water Uptake and Hydrolytic Enzyme Activities During Soybean Seed Germination[J].Soybean Science,2017,36(05):74.[doi:10.11861/j.issn.1000-9841.2017.01.0074]
[15]侯鹏浩,杨万明,杜维俊,等.不同程度盐胁迫对大豆苗期生物量及生理指标的影响[J].大豆科学,2020,39(03):422.[doi:10.11861/j.issn.1000-9841.2020.03.0422]
HOU Peng-hao,YANG Wan-ming,DU Wei-jun,et al.Effects of Different Degree Salt Stress on Biomass and Physiological Indexes of Soybean Seedling[J].Soybean Science,2020,39(05):422.[doi:10.11861/j.issn.1000-9841.2020.03.0422]
[16]王玉斌,张志贤,张辰淼,等.大豆盐胁迫响应NRT基因的鉴定及GmNRT1.5A的克隆和表达分析[J].大豆科学,2023,42(06):674.[doi:10.11861/j.issn.1000-9841.2023.06.0674]
[17]邹平,杨霞,于喆妍,等.不同种类海藻多糖对盐胁迫下大豆幼苗的促进作用[J].大豆科学,2024,43(01):73.[doi:10.11861/j.issn.10009841.2024.01.0073]
[18]何芳蕾,李兰馨,卢秋连,等.大豆磷脂酶D家族基因全基因组鉴定及耐盐性分析[J].大豆科学,2024,43(06):695.[doi:10.11861/j.issn.1000-9841.2024.06.0695]
备注/Memo
收稿日期:2022-02-03