YANG Cen,CHEN Li-yu,LIAO Chun-mei,et al.Gene Target Design and Functional Analysis of Soybean DGAT1/2 Genes[J].Soybean Science,2022,41(04):438-447.[doi:10.11861/j.issn.1000-9841.2022.04.0438]
大豆DGAT1/2基因表达分析和敲除靶点设计
- Title:
- Gene Target Design and Functional Analysis of Soybean DGAT1/2 Genes
- Keywords:
- soybean; DGAT1; DGAT2; gene expression; transient expression in tobacco leaves; CRISPR/Cas9; knockout target; soybean hair root tansformation
- 文献标志码:
- A
- 摘要:
- 二酰甘油酰基转移酶(DGAT)是将甘油二酯(DAG)催化成甘油三酯(TAG)的限速酶。TAG是植物种子油脂的主要储存形式,人体内TAG过高不仅会造成高血脂、高血糖,还会使肝脏功能超负荷代谢,导致肝脏功能受损,血清转氨酶含量增加并最终形成脂肪肝,而DAG则更有益于人体健康。为给创制大豆dgat突变体和解析DGAT1/2基因功能奠定研究基础,本研究利用定量PCR检测8个GmDGAT1/2基因(DGAT1a、DGAT1b、DGAT1c、DGAT2a、DGAT2b、DGAT2c、DGAT2d和DGAT2e)的表达模式,通过烟草叶片瞬时表达方法检测GmDGAT1c 和GmDGAT2b表达对烟草叶片中油脂含量的影响,设计GmDGAT1/2基因敲除靶点并构建CRISPR/Cas9基因敲除载体,并通过大豆离体毛根转化试验检测基因敲除载体的有效性。结果表明:GmDGAT1/2在大豆的不同组织中均有表达,在种子中的表达丰度高于其他组织,且在完熟期(R8)的种子中表达丰度最高。瞬时表达GmDGAT1c和GmDGAT2b能使烟草叶片油脂含量分别提高32.53%和25.90%。另外,获得了含DGAT1a、DGAT1c的有效编辑靶点载体GmDGAT1-Cas9,含DGAT2a、DGAT2b、DGAT2c、DGAT2d和DGAT2e的有效编辑靶点载体GmDGAT2-Cas9。
- Abstract:
- Diacylglyceryl transferase (DGAT) is a speed-limiting enzyme that catalyzes triacylglycerol (TAG) from diacylglycerol (DAG). TAG is the main storage form of plant seed oil. Excessive TAG in human will only not cause hyperlipidemia and hyperglycemia, but also overload metabolism of liver function, resulting in impaired liver function, increased serum transaminase content and eventually formed fatty liver. While, DAG is more beneficial to human health. In order to lay the groundwork of acquire the mutant and understanding the function of DGAT1/2 genes, using quantitative PCR to detect tissue expression patterns of the eight GmDGAT1/2 genes (DGAT1a,DGAT1b,DGAT1c,DGAT2a,DGAT2b,DGAT2c,DGAT2d and DGAT2e), expressed GmDGAT1c and GmDGAT2b separately in tobacco leaves. And we constructed the knockout vectors of DGAT1/2 and transformed them into soybean hair roots for target detection by CRISPR/Cas9 technology. The results showed that GmDGAT1/2 were expressed in all detected tissues of soybeans, and the abundance of expression in seeds was higher than that in other tissues. And the expression of them in the seeds was the highest at seeds of mature stage (R8). The fat content of tobacco leaves, which expressed GmDGAT1c and GmDGAT2b separately was increased by 32.53% and 25.90%. In addition, we obtained vector GmDGAT1-Cas9 containing effective targets DGAT1a and DGAT1c, and vector GmDGAT2-Cas9 containing effective targets DGAT2a, DGAT2b, DGAT2c, DGAT2d and DGAT2e.
参考文献/References:
[1]NAN H, LU S, FANG C, et al. Molecular breeding of a high oleic acid soybean line by integrating natural variations[J]. Molecular Breeding, 2020, 40(9): 1-10. [2]邱玲. 中国食用植物油贸易竞争力研究[D]. 哈尔滨: 东北农业大学, 2017. (QIU L. Study on trade competitiveness of Chinese edible vegetable oil[D]. Harbin: Northeast Agricultural University, 2017.)[3]任波, 李毅. 大豆种子脂肪酸合成代谢的研究进展[J]. 分子植物育种, 2005(3): 301-306. (REN B, LI Y. Research advances on fatty acid biogynthesis metabolism in soybean seed[J]. Molecular Breeding, 2005(3): 301-306.)[4]〖ZK(〗MURASE T, MIZUNO T, OMACHI T, et al. Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice[J]. Journal of Lipid Research, 2001, 42(3): 372-378. [5]〖ZK(〗NAGAO〖KG(0.9mm〗 T, WATANABE H, GOTO N, et al. Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial[J]. The Journal of Nutrition, 2000, 130(4): 792-797. [6]乔睿. 怎样有效降低甘油三酯[N]. 健康报, 2019-06-04(7). (QIAO R. How to reduce triglycerides effectively [N]. Health, 2019-06-04(7).)[7]李熠阳, 王远亮. 甘油二酯的功能及安全性评价研究进展[J]. 食品与机械, 2012, 28(3): 255-257, 261. (LI Y Y, WANG Y L. Functions and safety evaluation of diacylglycerol[J]. Food & Machinery, 2012, 28(3): 255-257, 261.)[8]LI R, HATANAKA T, YU K, et al. Soybean oil biosynthesis: Role of diacylglycerol acyltransferases[J]. Functional & Integrative Genomics, 2013,13: 99-113. [9]仲晓芳, 钱雪艳, 牛陆, 等. 转基因技术对提高大豆油脂和油酸含量的作用[J]. 大豆科技, 2019 (6): 27-29. (ZHONG X F, QIAN X Y, NIU L, et al. Effect of transgenic technology on improving soybean oil and oleic acid content[J]. Soybean Science & Technology, 2019(6): 27-29.)[10]LARDIZABAL K, EFFERTZ R, LEVERING C, et al. Expression of umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant Physiology, 2008, 148(1): 89-96. [11]边妙, 郭葳, 周新安, 等. 转基因科普系列-转基因技术提高大豆油脂品质[J]. 大豆科技, 2018(4): 54-58. (BIAN M, GUO W, ZHOU X A, et al. Improveing soybean oil quality by GM technology[J]. Soybean Science and Technology, 2018(4): 54-58.)[12]张飞, 高秀清, 张靖洁, 等. 种子特异表达异源DGAT1基因提高大豆种子含油量和营养品质[J]. 生物工程学报, 2018, 34(9): 1478-1490.(ZHANG F, GAO X Q, ZHANG J J, et al. Seed-specific expression of heterologous gene DGAT1 increase soybean seed oil content and nutritional quality[J]. Chinese Journal of Biotechnology, 2018, 34(9): 1478-1490.)[13]赵翠格, 刘頔, 李凤兰, 等. 植物种子油脂的生物合成及代谢基础研究进展[J]. 种子, 2010, 29(4): 56-62. (ZHAO C G, LIU D, LI F L, et al. Advances in research on seed oil biosynthesis and basal metabolism[J]. Seed, 2010, 29(4): 56-62.)[14]黄卓烈, 朱利泉. 生物化学[M]. 北京:中国农业出版社, 2004: 226-232. (HUANG Z L, ZHU L Q. Biochemistry[M]. Beijing: China Agriculture Press, 2004: 226-232.)[15]马三梅. 植物中从二酰甘有到三酰甘油的两条合成新途径[J]. 生命的化学, 2006, 26(1): 65-66. (MA S M. Two new pathways from diacylglycerol to triacylglycerol in plants[J]. Chemistry of Life, 2006, 26(1): 65-66.)[16]陶芬芳, 邢蔓, 岳宁燕, 等. 植物甘油三酯合成相关基因研究进展[J]. 作物研究, 2017, 31(3): 330-336. (TAO F F, XING M, YUE N Y, et al. Research advances of genes related to plant triacylglycerol synthesis[J]. Crop Research, 2017, 31(3): 330-336.)[17]DAHLQVIST A, STAHL U, LENMAN M, et al. Phospholipid: Dia-cylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6487-6492. [18]LU L, WEI W, LI Q T, et al. A transcriptional regulatory module controls lipid accumulation in soybean[J]. New Phytologist, 2021, 231(2): 661-678. [19]郑玲. 花生二酰甘油酰基转移酶(AhDGAT)基因家族的功能与调控研究[D]. 济南: 山东大学, 2018. (ZHENG L. Function and regulation research of peanut Diacylgycerol Acyltransferase(AhDGAT)gene family[D]. Jinan: Shandong University, 2018.)[20]苑丽霞, 毛雪, 高昌勇, 等. 种子特异表达二酰甘油酰基转移酶1基因(VgDGAT1)提高亚麻荠种子油脂积累 [J]. 植物生理学报, 2015, 51 (5): 668-678. (YUAN L X, MAO X, GAO C Y, et al. Seed-specific over-expression of a Diacylglycerol Acyltransferase 1 gene (VgDGAT1) increase seed oil accumulation in Camelina sativa[J]. Plant Physiology Communications, 2015, 51(5): 668-678.)[21]任国鹏, 葛丽萍, 孙超超, 等. 续随子二酰甘油酰基转移酶2基因(ElDGAT2)克隆与功能分析[J]. 植物生理学报, 2019, 55(8): 1156-1166.(REN G P, GE L P, SUN C C, et al. Cloning and functional analysis of acyl-CoA:Diacylglycerol acyltransferase 2 gene (ElDGAT2) in Euphorbia lathyris[J]. Plant Physiology Communications, 2019, 55(8): 1156-1166.)[22]袁秀云, 田云芳, 张燕, 等. 油用牡丹PEPC基因的克隆及表达分析[J]. 中国油料作报, 2019, 12(10): 1-9. (YUAN X Y, TIAN Y F, ZHANG Y, et al. Cloning and expression analysis of PEPC gene from Paeonia ostii[J]. Chinese Journal of Oil Crop Sciences, 2019, 12(10): 1-9.)[23]孟祥河. 功能性甘油二酯的酶促酯化合成及其减肥功能的研究[D]. 无锡: 江南大学, 2004. (MENG X H. Study on enzymatic synthesis of functional lipid and its antiobesity characteristics[D]. Wuxi: Jiangnan University, 2004.)[24]李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展[J]. 生物工程学报, 2015, 31(11): 1531-1542. (LI C, CAO W G. Advances in CRISPR/Cas9-mediated gene editing[J]. Chinese Journal of Biotechnology, 2015, 31(11): 1531-1542.)[25]MOJICA F, DíEZ-VILLASE O R C, GARCíA-MARTíNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182.[26]马兴亮, 刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析[J]. 遗传, 2016, 38(2): 118-125. (MA X L, LIU Y G. CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants[J]. Hereditas, 2016, 38(2): 118-125.)[27]CHEN L, NAN H A, KONG L, et al. Soybean AP1 homologs control flowering time and plant height[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1868-1879.[28]姜丽静,马春玲,车淑静. 大豆育种中转基因技术的研究进展[J]. 现代化农业, 2017(12): 15-16. (JIANG L J, MA C L, CHE S J. Research progress of transgenic technology in soybean breeding[J]. Modernizing Agriculture, 2017(12): 15-16.)[29]李泰, 杜浩, 黎永力, 等. 大豆BBX32基因生物信息学分析及基因编辑靶点设计[J]. 大豆科学, 2021, 40(5): 602-611. (LI T, DU H, LI Y L, et al. Bioinformatics analysis and gene editing target design of BBX32 gene in soybean[J]. Soybean Science, 2021, 40(5): 602-611.)[30]黎永力, 杜浩, 李泰, 等. 大豆FUL基因家族进化规律分析及基因编辑靶点鉴定[J]. 植物遗传资源学报, 2021, 22(4): 1120-1132. (LI Y L, DU H, LI T, et al. Molecular evolution of FUL family genes and identification of gene editing targets in soybean[J]. Journal of Plant Genetic Resources, 2021, 22(4): 1120-1132.)[31]朱红霞, 胡利宗, 邓小莉, 等. 三种豆科植物DGAT1基因家族的分子特征与进化分析[J]. 生物技术通报, 2011(10): 163-166. (ZHU H X, HU L Z, DENG X L, et al. Molecular characterization and evolutionary analysis of DGAT1 gene family in three fabaceae plants[J]. Biotechnology Bulletin, 2011(10): 163-166.)[32]魏晨丹, 于继高, 滕佳, 等. 豆科全基因组DGAT基因家族的鉴定与进化分析[J]. 中国油料作物学报, 2020, 42(5): 807-817. (WEI C D, YU J G, TENG J, et al. Identification and evolutionary analysis of DGAT gene family in legumes[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 807-817.)[33]白玫, 吴鸿. 拟南芥TAG1基因对脂类合成调控作用的研究进展[J]. 植物学报, 2009, 44(6): 735-741. (BAI M, WU H. Recent progress in lipid biosynthesis regulated by TAG1 in Arabidopsis thaliana[J]. Bulletin of Botany, 2009, 44(6): 735-741.)[34]刘贵芹, 邵群, 黄荣峰, 等. 大豆DGAT基因家族的鉴定和表达分析[J]. 中国农学通报, 2013, 29(12): 55-61. (LIU G Q, SHAO Q, HUANG R F, et al. Characterization and expression analysis of DGAT gene family in soybean[J]. Chinese Agricultural Science Bulletin, 2013, 29(12): 55-61.)[35]张飞, 高慧玲, 刘宝玲, 等. 大豆GmDGAT3基因的鉴定及表达分析[J]. 山西农业科学, 2019, 47(4): 491-496. (ZHANG F, GAO H L, LIU B L, et al. Identification and expression analysis of soybean GmDGAT3 genes[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(4): 491-496.)[36]晁毛妮, 胡喜贵, 张晋玉, 等. 大豆二酰甘油酰基转移酶基因GmDGAT1A启动子的克隆与功能分析[J]. 华北农学报, 2020, 35(4): 27-34. (CHAO M N, HU X G, ZHANG J Y, et al. Cloning and functional analysis of promoter of diacylglycerol acyltransferase gene GmDGAT1A in soybean[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4): 27-34.)[37]甘卓然, 石文茜, 黎永力, 等. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300. (GAN Z R, SHI W Q, LI Y L, et al. Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean[J]. Acta Agronomica Sinica, 2020, 46(8): 1291-1300.)[38]王计平, 张玲慧, 赵静, 等. 紫苏种子脂肪酸代谢及关键酶基因调控油脂合成规律的研究[J]. 中国粮油学报, 2016, 31(3): 5. (WANG J P, ZHANG L H, ZHAO J, et al. Regulation of controlling oil synthesis by fatty acid metabolism of Perilla seed and key enzyme gene[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(3): 5.)[39]CHENG Q, DONG L, GAO T, et al. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max[J]. Journal of Experimental Botany, 2018, 69(10): 2527-2541. [40]高宇, 陈莹, 孙岩, 等. 特色油料作物油莎豆CeDGAT1基因的鉴定及表达分析[J]. 山西农业科学, 2020, 48(6): 831-835, 841. (GAO Y, CHEN Y, SUN Y, et al. Identification and expression analysis of CeDGAT1 gene in Cyperus esculentus with a special oil crop[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(6): 831-835, 841.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2022-01-07