[1]杨璧泽,刘宝辉,汤杨.大豆FLC-like基因生物信息学分析及开花调控功能解析[J].大豆科学,2022,41(04):427-437.[doi:10.11861/j.issn.1000-9841.2022.04.0427]
 YANG Bi-ze,LIU Bao-hui,TANG Yang.Bioinformatics Analysis and Flowering Regulation Function Analysis of FLC-like Genes in Soybean[J].Soybean Science,2022,41(04):427-437.[doi:10.11861/j.issn.1000-9841.2022.04.0427]
点击复制

大豆FLC-like基因生物信息学分析及开花调控功能解析

参考文献/References:

[1]孙明明,王萍,李智媛, 等. 大豆活性成分研究进展[J]. 大豆科学, 2018, 37(6): 975-983.(SUN M M, WANG P, LI Z Y, et al. Research progress of soybean active ingredients[J]. Soybean Science, 2018, 37(6): 975-983.)[2]LU S J, ZHAO X H, HU Y L, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield[J]. Nature Genetics, 2017, 49(5): 773-779.[3]YANG Y M, WANG L, CHE Z J, et al. Novel target sites for soybean yield enhancement by photosynthesis[J]. Journal of Plant Physiology, 2022, 268: 153580.[4]SRIKANTH〖KG(0.4mm〗 A, SCHMID M. Regulation of flowering time: All roads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2013-2037.[5]LIN X Y, LIU B H, WELLER J L, et al. Molecular mechanisms for the photoperiodic regulation of flowering in soybean[J]. Journal of Integrative Plant Biology, 2021, 63(6): 981-994.[6]吕世翔, 王萍, 孙明明, 等. 大豆生育期E1、E2、E3和E4基因的研究与应用[J]. 中国农业大学学报, 2019, 24(2): 12-19. (LYU S X, WANG P, SUN M M, et al. Research and application of soybean growth period genes E1, E2, E3 and E4[J]. Journal of China Agricultural University, 2019, 24(2): 12-19.)[7]LUO X, HE Y H. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization[J]. Journal of Integrative Plant Biology, 2020, 62(1): 104-117.[8]WHITTAKER C, DEAN C. The FLC locus: A platform for discoveries in epigenetics and adaptation[J]. Annual Review of Cell and Developmental Biology, 2017, 33(1): 555-575.[9]SHARMA N, GEUTEN K, GIRI B S, et al. The molecular mechanism of vernalization in Arabidopsis and cereals: Role of flowering locus C and its homologs[J]. Physiologia Plantarum, 2020, 170(3): 373-383.[10]QI H D, LIN Y, REN Q P, et al. RNA splicing of FLC modulates the transition to flowering[J]. Frontiers in Plant Science, 2019, 10: 1625.[11]BERRY S, DEAN C. Environmental perception and epigenetic memory:Mechanistic insight through FLC[J]. Plant Journal, 2015, 83(1): 133-148.[12]WU Z, FANG X F, ZHU D L, et al. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism[J]. Plant Physiology, 2020, 182(1): 27-37.[13]ITABASHI E, SHEA D J, FUKINO N, et al.Comparison of cold responses for orthologs of cabbage vernalization-related genes[J]. The Horticulture Journal, 2019, 88(4): 462-470.[14]KENNEDY A, GEUTEN K. The role of FLOWERING LOCUS C relatives in cereals[J]. Frontiers in Plant Science, 2020, 11: 617340. [15]JAUDAL M, ZHANG L L, CHE C, et al. MtVRN2 is a polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula[J]. Plant Journal, 2016, 86(2): 145-160. [16]LYU J, CAI Z D, LI Y H, et al. The floral repressor GmFLC-like is involved in regulating flowering time mediated by low temperature in soybean[J]. International Journal of Molecular Sciences, 2020, 21(4): 1322.[17]LU S J, DONG L D, FANG C, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication[J]. Nature Genetics, 2020, 52(4): 428-436.[18]赵海红,郭泰,王志新, 等. 全基因组重测序在大豆育种上的研究进展[J]. 农学学报, 2020, 10(12): 38-41.(ZHAO H H, GUO T, WANG Z X, et al. Whole genome resequencing in soybean breeding: Research progress[J]. Journal of Agriculture, 2020, 10(12): 38-41.)[19]WERNER J D, BOREVITZ J O, UHLENHAUT N H, et al. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions[J]. Genetics, 2005, 170(3): 1197-1207. [20]LI P J, TAO Z, DEAN C. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR[J]. Genes Development, 2015, 29(7): 696-701.[21]MACHADO F B, MOHARANA K C, ALMEIDA-SILVA F, et al. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas[J]. The Plant Journal, 2020, 103(5): 1894-1909.[22]CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.[23]CASTELN-MUOZ N, HERRERA J, CAJERO-S NCHEZ W,et al. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants[J]. Frontiers in Plant Science, 2019, 10: 853.[24]L J, SUO H C, YI R, et al. Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean[Glycine max(L.)Merr.], promotes flowering in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15: 232.[25]ZHANG J Y, XU M L, DWIYANTI M S, et al. A soybean deletion mutant that moderates the repression of flowering by cool temperatures[J]. Frontiers in Plant Science, 2020, 11: 429.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2022-01-28

基金项目:国家自然科学基金(31801385)。
第一作者:杨璧泽(1993—),男,硕士研究生,主要从事大豆开花调控分子机理研究。E-mail:yangbize930809@163.com。
通讯作者:汤杨(1989—),女,博士,讲师,主要从事光温调控大豆生长发育的分子机制研究。E-mail:tangyang@gzhu.edu.cn;
刘宝辉(1964—),男,博士,教授,主要从事光周期调控大豆开花研究。E-mail:liubh@gzhu.edu.cn。

更新日期/Last Update: 2022-08-10