ZHU Kun,ZHAI Ying,YU Hai-wei,et al.Response of Soybean GmNCED5 Gene Under Abiotic Stress and Its Bioinformatics Analysis[J].Soybean Science,2021,40(04):476-481.[doi:10.11861/j.issn.1000-9841.2021.04.0476]
大豆GmNCED5基因非生物胁迫响应及生物信息学分析
- Title:
- Response of Soybean GmNCED5 Gene Under Abiotic Stress and Its Bioinformatics Analysis
- Keywords:
- Soybean; GmNCED5; Abiotic stress; Expression analysis; Bioinformatics analysis; Cis-element
- 文献标志码:
- A
- 摘要:
- 为探究大豆9-顺式-环氧类胡萝卜素双加氧酶(NCED)基因GmNCED5对非生物胁迫的响应及原理,为植物基因工程及大豆抗逆育种提供理论基础,本研究检测GmNCED5在非生物胁迫下的表达量,并对该基因及其启动子序列进行生物信息学分析。实时荧光定量PCR结果显示,干旱、高盐、高温、低温及外源脱落酸(ABA)处理均可以不同程度地诱导GmNCED5在大豆幼苗中表达。GmNCED5基因开放阅读框(ORF)全长1 686 bp,编码561个氨基酸。亚细胞定位预测结果显示,GmNCED5蛋白主要定位于细胞质中。系统进化分析表明GmNCED5蛋白与豇豆VuNCED蛋白的亲缘关系最近。启动子预测分析结果显示,GmNCED5启动子区域含有5种激素响应相关顺式作用元件和3种胁迫响应相关顺式作用元件。由此推测GmNCED5可能通过启动子区域的顺式作用元件响应非生物胁迫。
- Abstract:
- In order to explore the role and mechanism of soybean 9-cis-epoxycarotenoid dioxygenase (NCED) gene GmNCED5 in abiotic stress and provide a theoretical basis for plant genetic engineering and soybean stress resistance breeding, we analyzed the gene and promoter sequence of GmNCED5 with bioinformatics method, and detected its expression levels under abiotic stresses. The results of real-time quantitative PCR showed that drought, high salt, high temperature, low temperature and exogenous abscisic acid (ABA) treatments could induce the expression of GmNCED5 in soybean seedlings to different degrees. The open reading frame (ORF) of GmNCED5 gene was 1 686 bp, encoding 561 amino acids. The prediction results of subcellular localization showed that GmNCED5 protein was mainly localized in the cytoplasm. Phylogenetic analysis showed that GmNCED5 protein was closely related to VuNCED protein in cowpea. The results of promoter prediction analysis showed that the promoter region of GmNCED5 contained five hormone-responsive cis-elements and three stress-responsive cis-elements. These results suggested that GmNCED5 might respond to the abiotic stress via the cis-elements in the promoter region.
参考文献/References:
[1]Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61(1): 651-679. [2]Vishwakarma K, Upadhyay N, Kumar N, et al. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects[J]. Frontiers in Plant Science, 2017, 8: 161.[3]Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plant: A review of the present state of knowledge of ABA biosynthesis[J]. Journal of Experimental Botany, 2001, 52(359): 1145-1164.[4]Qin X Q, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean[J]. Proceeding of the National Academy of Science of the United States of America, 1999, 96(26): 15354-15361. [5]Schwartz S H, Qin X, Zeevaart J A. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes[J]. Plant Physiology, 2003, 131(4): 1591-1601.[6]王小龙, 刘凤之, 史祥宾, 等. 葡萄NCED基因家族进化及表达分析[J]. 植物学报, 2019, 54(4): 474-485. (Wang X L, Liu F Z, Shi X B, et al. Evolution and expression analysis of NCED gene family in grapevine[J]. Chinese Bulletin of Botany, 2019, 54 (4): 474-485.)[7]Endo A, Sawada Y, Takahashi H, et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells[J]. Plant Physiology, 2008, 147(4): 1984-1993.[8]Frey A, Effroy D, Lefebvre V, et al. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members[J]. The Plant Journal, 2012, 70(3): 501-512.[9]Xia H, Wu S, Ma F W. Cloning and expression of two 9-cis-epoxycarotenoid dioxygenase genes during fruit development and under stress conditions from Malus[J]. Molecular Biology Reports, 2014, 41(10): 6795-6802. [10]王昌耀, 闫尔俊, 常 凯, 等. 转LeNCED1基因对白三叶ABA含量及水分利用效率的影响[J]. 云南农业大学学报, 2020, 35(6): 1029-1033. (Wang C Y, Yan E J, Chang K, et al. Effect of transfection of LeNCED1 gene on ABA content and water use efficiency in white clover[J]. Journal of Yunnan Agricultural University, 2020, 35(6): 1029-1033.)[11]Xu P, Cai W. Functional characterization of the BnNCED3 gene in Brassica napus[J]. Plant Science, 2017, 256: 16-24. [12]张洁. 大豆GmNCED1基因的功能鉴定及其表达调控研究[D]. 长春: 吉林农业大学, 2014. (Zhang J. Functional identification and expression regulation of GmNCED1 gene in soybean[D]. Changchun: Jilin Agricultural University, 2014.)[13]李琼琼, 张洁, 邓宇, 等. 大豆GmNCED1基因的克隆及表达模式分析[J]. 中国油料作物学报, 2014, 36(4): 455-460. (Li Q Q, Zhang J, Deng Y, et al. Cloning and expression pattern analysis of soybean GmNCED1 gene[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(4): 455-460.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2021-02-02