YAO Ting,LONG Jie-qi,HAN Xiao-zeng,et al.Effects of Elevated Atmospheric CO2 Concentration on Seeds Vitality of Main Crop in Northeast China[J].Soybean Science,2021,40(03):379-384.[doi:10.11861/j.issn.1000-9841.2021.03.0379]
大气CO2浓度升高对东北主栽作物种子活力的影响
- Title:
- Effects of Elevated Atmospheric CO2 Concentration on Seeds Vitality of Main Crop in Northeast China
- Keywords:
- Carbon dioxide; Soybean; Maize; Rice; Seed vigor
- 文献标志码:
- A
- 摘要:
- 大气CO2浓度升高是全球气候变化的重要特征之一,为揭示未来气候变化对作物种子活力的影响,进行种子发芽对CO2增加的适应性响应研究。2019年在中国科学院海伦农业生态实验站进行开顶式气室(OTC)模拟CO2增加试验,选取东北三大主栽作物大豆、玉米和水稻为供试作物,设置两个CO2处理,分别为aCO2 (400 μmol?mol-1)和eCO2 (700 μmol?mol-1)。结果表明:相比于对照(aCO2)处理,CO2浓度升高后,大豆种子的体积、百粒重、24 h吸胀速度、浸出液电导率、发芽率、发芽势和发芽指数分别降低了11.24%、10.53%、2.51%、27.72%、15.85%、19.75%和10.17%;虽然CO2升高未显著影响玉米种子百粒重,但其24 h吸胀速度和浸出液电导率分别降低了3.69%和8.62%,而发芽率、发芽势、发芽指数和活力指数分别提高了81.03%、75.00%、56.14%和81.68%;水稻种子的体积降低了21.35%,而其千粒重、发芽势、发芽指数和活力指数分别提高了5.62%、5.19%、26.11%和32.21%。综合以上结果表明,大气CO2浓度升高对不同作物种子活力的影响存在差异,从发芽指标来看,大气CO2浓度为700 μmol?mol-1时,种子活力表现为玉米>水稻>大豆。
- Abstract:
- Elevated atmospheric CO2 concentration is one of the important characteristics of global climate change. In order to reveal the impact of future climate change on the vitality of crop seeds, a germination experiment was carried out to study the adaptive response of seeds to elevated CO2. In 2019, an open top chamber (OTC)was set up to simulate CO2 enrichment at Hailun Agroecological Experimental Station, Chinese Academy of Sciences. Three major crop including soybean, maize and rice of Northeast China were selected as test material. Two CO2 treatments were aCO2 (ambient CO2, 400 μmol?mol-1) and eCO2 (elevated CO2, 700 μmol?mol-1). The results showed that eCO2 decreased seed volume, 100-seed weight, 24 h-imbibition speed, electrical conductivity rate of seeds soaking solution, germination rate, germination potential and germination index in soybean seeds decreased by 11.24%, 10.53%, 2.51%, 27.72%, 15.85%, 19.75% and 10.17% compared to aCO2, respectively. Although CO2 enrichment did not significantly influence the 100-seed weight of maize, the 24 h-imbibition speed and electrical conductivity rate of seeds soaking solution in maize seeds at eCO2 decreased by 3.69% and 8.62%, respectively. The germination rate, germination potential, germination index and vigor index of rice seeds at eCO2 increased by 81.03%, 75.00%, 56.14% and 81.68% compared to aCO2, respectively. The volume of rice seeds decreased by 21.35%, while the 1000-seed weight, germination potential, germination index and vigor index increased by 5.62%, 5.19%, 26.11% and 32.21%, respectively. All these indicated that the responses of various crop seeds to elevated atmospheric CO2 were different. Totally, at 700 μmol?mol-1 CO2 concentration, the seed vitality was maize>rice>soybean.
参考文献/References:
[1]Church J, Clark P. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]//IPCC. IPCC WGI Fifth Assessment Report. Cambridge: Cambridge University Press, 2013:95-123.[2]许吟隆, 赵运成, 翟盘茂. IPCC特别报告SRCCL关于气候变化与粮食安全的新认知与启示[J]. 气候变化研究进展, 2020, 16(1): 37-49. (Xu Y L, Zhao Y C, Zhai P M. IPCC special report SRCCL′s new cognition and enlightenment on climate change and food security[J]. Research Progress of Climate Change, 2020, 16(1): 37-49.)[3]李彦生, 金剑, 刘晓冰. 作物对大气 CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. (Li Y S, Jin J, Liu X B. Advances in physiological responses of crops to elevated atmospheric CO2 concentration[J]. Journal of Crop Science, 2020, 46(12): 1819-1830.)[4]赖金美, 潘若琪, 刘燕飞, 等. 大气二氧化碳浓度增加对木本植物BVOCs释放的影响[J]. 生态学杂志, 2020, 39(3): 865-871. (Lai J M, Pan R Q, Liu Y F, et al. Effects of elevated atmospheric carbon dioxide concentration on BVOCs release from woody plants[J]. Journal of Ecology, 2020, 39(3): 865-871.)[5]景立权, 赖上坤, 王云霞, 等. 大气CO2浓度和温度互作对水稻生长发育的影响[J]. 生态学报, 2016(14): 4254-4265. (Jing L Q, Lai S K, Wang Y X, et al. Effects of atmospheric CO2 concentration and temperature on rice growth and development[J]. Journal of Ecology, 2016(14): 4254-4265.)[6]Myers S, Zanobetti A, Kloog I, et al. Increasing CO2 threatens human nutrition [J]. Nature, 2014, 510: 139-142. [7]王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4): 822-833. (Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agricultural Environmental Science, 2020, 39(4): 822-833.)[8]赵毅, 于翠梅, 杨柳, 等. 野生大豆和不同栽培大豆品种在镉胁迫下种子萌发及幼苗生长的差异[J]. 大豆科学, 2019, 38(2): 267-273. (Zhao Y, Yu C M, Yang L, et al. Differences of seed germination and seedling growth between wild soybean and different cultivated soybean varieties under cadmium stress [J]. Soybean Science, 2019, 38(2): 267-273.)[9]金奖铁, 李扬, 李荣俊, 等. 大气二氧化碳浓度升高影响植物生长发育的研究进展[J]. 植物生理学报, 2019, 5(3): 558-568. (Jin J T, Li Y, Li R J, et al. Research progress on the effects of elevated atmospheric carbon dioxide on plant growth and development[J]. Journal of Plant Physiology, 2019, 5(3): 558-568.)[10]杨海龙, 蔡金洋. 大气CO2浓度和温度升高对水稻生长发育影响的研究进展[J]. 安徽农业科学, 2020, 48(4): 24-27, 30. (Yang H L, Cai J Y. Research progress on effects of elevated atmospheric CO2 concentration and temperature on rice growth and development[J]. Anhui Agricultural Science, 2020, 48(4): 24-27,30.)[11]杨京京, 陈江鲁, 谢瑞芝, 等. 玉米种子粒重差异对相关发芽指标整齐度的影响[J]. 作物杂志, 2018, 28(3): 180-184. (Yang J J, Chen J L, Xie R Z, et al. Effects of different seed weight on uniformity of germination indexes in maize[J]. Journal of Crop Science, 2018, 28(3): 180-184.)[12]江绪文, 李贺勤, 王建华. 不同大小玉米种子萌发及活力初步研究[J]. 种子, 2014, 33(6): 75-78. (Jiang X W, Li H Q, Wang J H. Preliminary study on germination and vigor of different corn seeds[J]. Seed, 2014, 33(6): 75-78.)[13]高厚玉, 景立权, 陈龙, 等. 自由空气中CO2浓度和温度增高对水稻种子活力的影响[J]. 中国水稻科学, 2016, 30(4): 371-379. (Gao H Y, Jing L Q, Chen L, et al. Effects of elevated CO2 concentration and temperature in free air on seed vigor of rice[J]. Rice Science in China, 2016, 30(4): 371-379.)[14]王付娟, 刘书含, 李淑梅, 等. 野生大豆种皮障碍休眠解除及萌发的研究[J]. 大豆科学, 2019, 38(5): 733-739. (Wang F J, Liu S H, Li S M, et al. Study on dormancy breaking and germination of wild soybean seed coat obstacle [J]. Soybean Science, 2019, 38(5): 733-739.)[15]鲁春霞, 高平, 杨纯光. 水稻种子劣变对发芽率影响及应对措施[J]. 南方农业, 2019, 13(11): 5-7. (Lu C X, Gao P, Yang C G. Effect of rice seed deterioration on germination rate and countermeasures[J]. Southern Agriculture, 2019, 13(11): 5-7.)[16]连彩云, 马忠明. 玉米种子活力研究综述[J]. 甘肃农业科技, 2019(16): 64-68. (Lian C Y, Ma Z M. Review on seed vigor of maize[J]. Agricultural Science and Technology in Gansu Province, 2019(16): 64-68.)[17]陈楠楠, 周超, 王浩成, 等. 大气二氧化碳含量升高对稻麦产量影响的整合分析[J]. 南京农业大学学报, 2013, 36(2): 83-90. (Chen N N, Zhou C, Wang H C, et al. The integrated analysis of the effect of the increase of atmospheric carbon dioxide content on rice and wheat yield[J]. Journal of Nanjing Agricultural University, 2013, 36(2): 83-90.)[18]杨连新, 王云霞, 朱建国, 等. 开放式空气中CO2浓度增高(FACE)对水稻生长和发育的影响[J]. 生态学报, 2010, 30(6): 1573-1585. (Yang L X, Wang Y X, Zhu J G, et al. Effects of elevated CO2 concentration in open air (FACE) on rice growth and development[J]. Journal of Ecology, 2010, 30(6): 1573-1585.)[19]张安鹏, 钱前, 高振宇. 水稻种子活力的研究进展[J]. 中国水稻科学, 2018, 32(3): 92-99. (Zhang A P, Qian Q, Gao Z Y. Research progress of rice seed vigor[J]. Rice Science in China, 2018, 32(3): 92-99.)[20]Qiao Y F, Miao S J, Li Q, et al. Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region [J]. Science of The Total Environment, 2019, 666: 405-413.[21]刘万. 同一品种玉米种子活力差异试验[J]. 农村科技, 2017 (4): 11-13. (Liu W. Experiment on seed vigor difference of the same variety of maize[J]. Rural Science and Technology,2017(4): 11-13.)[22]程春明, 王瑞珍, 吴问胜. 大豆种子活力基因型差异的研究[J]. 江西农业学报, 2003, 15(1): 8-12. (Cheng C M, Wang R Z, Wu W S. The study of genotypic differences in soybean seed vigor[J]. Jiangxi Agricultural University, 2003, 15(1): 8-12.)[23]孙群, 王建华, 孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学, 2007, 40(1): 48-53. (Sun Q, Wang J H, Sun B Q. Advances in physiological and genetic mechanism of seed vigor[J]. Agricultural Science in China, 2007, 40(1): 48-53.)[24]于奇, 曹亮, 金喜军, 等. 低温胁迫下褪黑素对大豆种子萌发的影响[J]. 大豆科学, 2019, 38(1): 56-62. (Yu Q, Cao L, Jin X J, et al. Effect of melatonin on soybean seed germination under low temperature stress [J]. Soybean Science, 2019, 38(1): 56-62.)[25]田艺心, 高会, 汪自强. 大豆种子萌发影响因素研究进展[J]. 大豆科学, 2011, 30(1): 153-157. (Tian Y X, Gao H, Wang Z Q. Research progress on influencing factors of soybean seed germination [J]. Soybean Science, 2011, 30(1): 153-157.)[26]Hampton J G, Boelt B, Rolston M P, et al. Producing quality seed: The problem of seed vigor[J].Special Publication - Agronomy Society of New Zealand, 2000(12): 53-61.[27]Sun Q, Wang J, Sun B. Advances on seed vigor physiological and genetic mechanisms[J]. Agricultural Sciences in China, 2007, 6(9):1060-1066.[28]Wang Y X, Frei M, Song Q L, et al. The impact of atmospheric CO2 concentration enrichment on rice quality-A research review[J]. Acta Ecologica Sinica, 2011, 31: 277-282.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2021-01-11