[1]刘美玲,冯乃杰,郑殿峰,等.不同浓度吲哚丁酸钾对大豆苗期生长发育及生理代谢的影响[J].大豆科学,2021,40(02):217-223.[doi:10.11861/j.issn.1000-9841.2021.02.0217]
 LIU Mei-ling,FENG Nai-jie,ZHENG Dian-feng,et al.Effects of Different Concentrations of Potassium Indole Butyrate on Soybean Growth Development and Physiological Metabolism at Seedlings Stage[J].Soybean Science,2021,40(02):217-223.[doi:10.11861/j.issn.1000-9841.2021.02.0217]
点击复制

不同浓度吲哚丁酸钾对大豆苗期生长发育及生理代谢的影响

参考文献/References:

[1]Wang W, Wang C, Pan D, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2):196-201.[2]Wang C,Linderholm H W, Song Y, et al. Impacts of drought on maize and soybean production in northeast China during the past five decades[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2459.[3]Pathan M S, Lee J D, Shannon J G, et al. Recent advances in breeding for drought and salt stress tolerance in soybean[M]//Jenks M A, Hasegawa P M, Jain S M. ed. Advances in molecular breeding toward drought and salt tolerant crops. Springer, 2007: 739-773.[4]李秀芬, 郭昭滨, 朱海霞, 等. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响[J]. 应用生态学报, 2020, 31(4):1223-1232.(Li X F, Guo Z B, Zhu H X, et al. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1223-1232.)[5]臧紫薇, 赵雪, 李海燕, 等. 大豆种质资源苗期抗旱性评价[J]. 大豆科学, 2016, 35(6): 964-968.(Zang Z W, Zhao X, Li H Y, et al. Evaluation of drought resistance of soybean germplasm in seedling stage[J]. Soybean Science, 2016, 35(6): 964-968.)[6]李建英, 周长军, 杨柳, 等. 水分胁迫对大豆苗期叶片内源激素含量与保护酶活性的影响[J]. 大豆科学, 2010, 29(6): 959-963.(Li J Y, Zhou C J, Yang L, et al. Effect of water stress on endogenous hormone and protective enzymes in soybean seedling leaves[J]. Soybean Science, 2010, 29(6): 959-963.)[7]刘文夫, 董守坤, 徐亚会, 等. 大豆苗期干旱胁迫对糖分吸收与相关酶活性的影响[J]. 作物杂志, 2014(3): 117-120.(Liu W F, Dong S K, Xu Y H, et al. Effects of drought stress on sugar absorption and related enzyme activities at soybean seedling[J]. Crops, 2014(3): 117-120.)[8]Fan Y F, Chen J X, Cheng Y J, et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system[J].PLoS One, 2018, 13(5): e0198159.[9]Jumrani K, Bhatia V S, Pandey G P. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean[J]. Photosynthesis Research, 2017, 131(3): 333-350.[10]Minobu K. Effect of growing soybean plants under continuous light on leaf photosynthetic rate and other characteristics concerning biomass production[J]. Journal of Agronomy, 2008, 7(2): 156-162.[11]余明龙, 左官强, 李瑶, 等. 调环酸钙对盐碱胁迫下大豆幼苗光合特性和保护酶活性的调节作用[J]. 中国油料作物学报, 2019, 41(5): 741-749.(Yu M L, Zuo G Q, Li Y, et al. Effects of prohexadione-calcium on photosynthetic characteristics and protective enzyme activity of soybean seedlings under saline-alkali stress[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 741-749.)[12]Feng N J, Liu C J, Zheng D F, et al. Effect of uniconazole treatment on the drought tolerance of soybean seedlings[J]. Pakistan Journal of Botany, 2020, 52(5): 1515-1523.[13]Attarzadeh M, Balouchi H, Baziar M R. Effects of paclobutrazol’s pre-treatment on cold tolerance induction in soybean seedling (Glycine max L.)[J]. Italian Journal of Agronomy, 2018: 155-162.[14]Zou J N, Jin X J, Zhang Y X, et al. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress[J]. Photosynthetica, 2019, 57(2): 512-520.[15]齐德强, 冯乃杰, 郑殿峰, 等. 不同壮秧剂对水稻幼苗生长及生理特性的影响[J]. 核农学报, 2019, 33(8):1611-1621.(Qi D Q, Feng N J, Zheng D F, et al. Effects of different seedling strengthening agents on growth and physiological characteristics of rice seedlings[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8):1611-1621.)[16]Knight P R, Coker C H, Anderson J M, et al. Mist interval and K-IBA concentration influence rooting of orange and mountain azalea[J]. Native Plants Journal, 2005, 6(2): 111-117.[17]Griffin J J, Lasseigne F T. Effects of K-IBA on the rooting of stem cuttings of 15 taxa of snowbells (Styrax spp.)[J]. Journal of Environmental Horticulture, 2005,23(4):171-174.[18]王红, 宋涛, 刘辉, 等. 不同浓度生根剂对玉米根系生长的影响[J]. 黑龙江农业科学, 2016(2): 57-60.(Wang H, Song T, Liu H, et al. Effect of different concentrations of rooting agents on maize radicle growth[J]. Heilongjiang Agricultural Sciences, 2016(2): 57-60.)[19]Porcel R, José M B, Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence[J]. New Phytologist, 2003, 157(1): 135-143.[20]Jumrani K, Bhatia V S. Interactive effect of temperature and water stress on physiological and biochemical processes in soybean[J]. Physiology and Molecular Biology of Plants, 2019, 25(3): 667-681.[21]Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Science, 2001, 161(4): 765-771.[22]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.(Li H S. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing:Higher Education Press, 2000.)[23]Yang F,Feng L Y, Liu Q L, et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition[J]. Environmental and Experimental Botany, 2018, 150: 79-87.[24]Lopez M A, Xavier A, Rainey K M. Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr)[J]. Frontiers in Plant Science, 2019, 10: 680.[25]Wang W S, Wang C, Pan D Y, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 196-201.[26]Fan Y, Chen J, Wang Z, et al. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis[J]. BMC Plant Biology, 2019, 19(1): 34.[27]黄文婷, 冯乃杰, 郑殿峰, 等. 烯效唑和胺鲜酯对大豆叶片光合特性与碳代谢的调控效应[J]. 大豆科学, 2020, 39(2): 243-251.(Huang W T, Feng N J, Zheng D F, et al. Regulatory effects of uniconazole and diethyl hexanoate on photosynthetic characteristics and carbon metabolism of soybean leaves[J]. Soybean Science, 2020, 39(2): 243- 251.)[28]Devi M J,Taliercio E W, Sinclair T R. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits[J]. Journal of Experimental Botany, 2015, 66(7): 1845-1850.[29]Ramesh R,Ramprasad E. Effect of plant growth regulators on morphological, physiological and biochemical parameters of soybean (Glycine max L. Merrill)[J]. Biotechnology and Bioforensics, 2015: 61-71.[30]Zhang M C, He S Y, Zhan Y C, et al. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean[J].PLoS one, 2019, 14(12): e0226542.[31]Osman H S. Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycinebetaine and proline[J]. Annals of Agricultural Sciences, 2015, 60(2): 389-402.[32]Akitha Devi M K, Giridhar P. Variations in physiological response, lipid peroxidation, antioxidant enzyme activities, proline and isoflavones content in soybean varieties subjected to drought stress[J]. Proceedings of the National Academy of ences India, 2015, 85(1): 35-44.[33]Sallam A, Alqudah A M, Dawood M F A, et al. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research[J]. International Journal of Molecular Sciences, 2019, 20(13): 3137.[34]Karami S, Sanavy S A M M, Ghanehpoor S, et al. Effect of foliar zinc application on yield, physiological traits and seed vigor of two soybean cultivars under water deficit[J]. Notulae Scientia Biologicae, 2016, 8(2): 181-191.[35]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.[36]郑殿峰, 赵黎明, 冯乃杰. 植物生长调节剂对大豆叶片内源激素含量及保护酶活性的影响[J]. 作物学报, 2008,34(7): 1233-1239.(Zheng D F, Zhao L M, Feng N J. Effects of plant growth regulators (PGRs) on endogenous hormone contents and activities of protective enzymes in soybean leaves[J]. Acta Agronomica Sinica, 2008,34(7): 1233-1239.)[37]冯亚楠. 植物生长调节剂对大豆苗建成及产量品质的调控效应[D]. 大庆:黑龙江八一农垦大学, 2010.(Feng Y N. Regulatory effects of plant growth regulators on soybean seedling establishment, yield and quality[D]. Daqing:Heilongjiang Bayi Agriculture University, 2010.)[38]Nguyen T Q, Pham H B V, Le T V, et al. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory[J]. AIMS Bioengineering, 2020, 7(3): 114.[39]Kocsy G, Laurie R, Szalai G, et al. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses[J]. Physiologia Plantarum, 2005, 124(2): 227-235.[40]Mwenye O J, Van Rensburg L, Van Biljon A, et al. The role of proline and root traits on selection for drought-stress tolerance in soybeans: A review[J]. South African Journal of Plant and Soil, 2016, 33(4): 245-256.[41]Porcel R, Ruiz-Lozano J M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress[J]. Journal of Experimental Botany, 2004, 55(403): 1743-1750.[42]李爽. 干旱和高温对大豆苗期抗氧化特性的影响[D]. 哈尔滨:东北农业大学, 2018.(Li S. Effects of drought and high temperature on the antioxidative characteristics of soybean seedlings[D]. Harbin:Northeast Agricultural University, 2018.)[43]魏湜, 张翯, 顾万荣, 等. DCPTA对盐胁迫下玉米叶片渗透调节生理生化特征影响[J]. 东北农业大学学报, 2015, 46(9): 1-8.(Wei S, Zhang H, Gu W R, et al. Effect of DCPTA on the physiological and biochemical characteristics of osmotic adjustment in maize seedling leaves under salt stress[J]. Journal of Northeast Agricultural University, 2015, 46(9): 1-8.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]郑 旭. 不同浓度6-BA对大豆叶片碳代谢相关生理指标的影响[J].大豆科学,2013,32(06):858.
 ZHENG Xu. Effects of Different Concentrations of 6-BA on Carbon Metabolism Related Indicators in Soybean Leaves[J].Soybean Science,2013,32(02):858.
[12]张晓可,於丙军.大豆幼苗根和叶片原生质的分离与纯化[J].大豆科学,2009,28(04):697.[doi:10.11861/j.issn.1000-9841.2009.04.0697]
 ZHANG Xiao-ke,YU Bing-jun.Isolation and Purification of Protoplasts in Roots and Leaves of Soybean Seedlings[J].Soybean Science,2009,28(02):697.[doi:10.11861/j.issn.1000-9841.2009.04.0697]
[13]申晓慧,张敬涛,姜成,等.大豆叶片叶绿素含量与光谱的特征分析[J].大豆科学,2009,28(04):747.[doi:10.11861/j.issn.1000-9841.2009.04.0747]
 SHEN Xiao-hui,ZHANG Jing-tao,JIANGCheng,et al.Correlation between Chlorophyll Content and Spectral Characteristics of Soybean Leaves[J].Soybean Science,2009,28(02):747.[doi:10.11861/j.issn.1000-9841.2009.04.0747]
[14]王雪,段玉玺,陈立杰.适用于大豆叶片蛋白质组分析的双向电泳最佳条件研究[J].大豆科学,2009,28(02):325.[doi:10.11861/j.issn.1000-9841.2009.02.0325]
 WANG Xue,DUAN Yu-xi,CHEN Li-jie.A Two-Dimensional Electrophoresis Protocol Suitable for Proteomic Analysis of Soybean Leaves[J].Soybean Science,2009,28(02):325.[doi:10.11861/j.issn.1000-9841.2009.02.0325]
[15]张明才 李召虎 田晓莉 段留生 王保民 翟志席 何钟佩.植物生长调节剂SHK -6 对大豆叶片氮素代谢的调控效应[J].大豆科学,2004,23(01):15.[doi:10.11861/j.issn.1000-9841.2004.01.0015]
 Zhang Ming cai Li Zhaohu Tian Xiaoli Duan Liusheng Wang Baomin Zhai Zhixi He Zhongpei.EFFECTOF PLANTGROWTH REGULATOR SHK-6 ONNITROGENMETABOLISM OF SOYBEAN LEAF[J].Soybean Science,2004,23(02):15.[doi:10.11861/j.issn.1000-9841.2004.01.0015]
[16]韩天富,王金陵,谭克辉,等.开花前后的光周期处理对大豆叶片蛋白质组分的影响[J].大豆科学,1995,14(02):95.[doi:10.11861/j.issn.1000-9841.1995.02.0095]
 [J].Soybean Science,1995,14(02):95.[doi:10.11861/j.issn.1000-9841.1995.02.0095]
[17]阎秀峰,许守民,苗以农.大豆光合生理生态的研究——第13报 大豆叶片的光合速率和水分利用效率[J].大豆科学,1990,9(03):221.[doi:10.11861/j.issn.1000-9841.1990.03.0221]
 [J].Soybean Science,1990,9(02):221.[doi:10.11861/j.issn.1000-9841.1990.03.0221]
[18]王新欣,赵晶晶,冯乃杰,等.低温胁迫对大豆花期不同冠层叶片生理活性及产量的影响[J].大豆科学,2020,39(02):252.[doi:10.11861/j.issn.1000-9841.2020.02.0252]
 WANG Xin-xin,ZHAO Jing-jing,FENG Nai-jie,et al.Effects of Low Temperature Stress on Physiological Activity and Yield of Different Soybean Canopy Leaves of Flowering Stage[J].Soybean Science,2020,39(02):252.[doi:10.11861/j.issn.1000-9841.2020.02.0252]
[19]王象然,张大勇,郑伟,等.代表性春大豆种质资源叶片蔗糖含量全基因组关联分析[J].大豆科学,2024,43(01):13.[doi:10.11861/j.issn.10009841.2024.01.0013]

备注/Memo

收稿日期:2020-10-25

基金项目:国家自然科学基金(31571613);黑龙江省自然科学基金重点项目(ZD2017003);国家重点研发计划(2017YFD0201306-03)。
第一作者:刘美玲(1996—),女,在读硕士,主要从事豆类作物化控原理与技术研究。E-mail:lml19960416@126.com。
通讯作者:冯乃杰(1970—),女,博士,教授,主要从事作物化控原理与技术研究。E-mail:byndfnj@126.com;郑殿峰(1969—),男,博士,教授,主要从事作物化控原理与技术研究。E-mail:zdffnj@163.com。

更新日期/Last Update: 2021-07-20