REN Qiu-yan,GAI Jun-yi,LI Kai.Cloning and Expression Analysis of Soybean Stress-tolerant Gene GmMADS[J].Soybean Science,2020,39(01):30-38.[doi:10.11861/j.issn.1000-9841.2020.01.0030]
大豆GmMADS基因的克隆及表达分析
- Title:
- Cloning and Expression Analysis of Soybean Stress-tolerant Gene GmMADS
- Keywords:
- Soybean[Glycine max (L.) Merr.]; GmMADS; Cis-acting element; Subcellular localization; Soybean mosaic virus (SMV); Abiotic stress
- 文献标志码:
- A
- 摘要:
- 为了探究大豆MADS-box编码基因在生物和非生物胁迫中的调控作用,以SMV抗感大豆品种为试验材料,从大豆中克隆GmMADS基因Glyma.02g121500,进行生物信息学分析和表达特点分析,同时检测不同逆境胁迫下GmMADS基因表达量变化情况。结果表明:GmMADS基因完整ORF长度为735 bp,编码244个氨基酸,pI 6.68,相对分子质量为28.2 kD。抗感品种间基因CDS序列存在1个SNP差异,氨基酸序列无差异。启动子序列包含防卫和胁迫响应元件、植物激素应答元件、光应答元件等许多顺式作用元件。GmMADS与木豆、花生、豇豆、羽扇豆等物种中的同源基因亲缘关系较近。亚细胞定位结果显示GmMADS在细胞核上表达。组织特异性表达分析显示GmMADS在花中的表达量最高。接种大豆花叶病毒后,抗病品种科丰1号GmMADS在2 h表达最高且显著高于感病品种南农1138-2;低温胁迫时,GmMADS表达在2 h上调;盐胁迫时,GmMADS表达在1 h下调;干旱胁迫时,GmMADS表达在2 h下调。本研究对下一步分析该基因功能、阐明该基因在调控大豆抗病和耐逆的分子机制具有重要意义。
- Abstract:
- In order to explore the regulatory role of soybean GmMADS gene in biotic and abiotic stresses, we cloned gene glyma.02g121500 from SMV resistant and susceptible soybean varieties. We analyzed the gene structure with bioinformatics, analyzed the expression characteristics, at the same time, we detected the expression of the gene under different stress. The results revealed: Gene glyma.02g121500 consisted a complete ORF of 735 bp encoding 244 amino acids. The theoretical isoelectric point is 6.68 and the relative molecular mass is 28.2 kD. The sequence alignment showed that there was one SNP difference in the CDS sequence between the resistant and susceptible varieties, and there was no difference in the amino acid sequence. Its promoter sequence contains a number of cis-acting elements such as defense and stress response elements, plant hormone response elements, photo responsive elements, and so on. The homologous genes in the species such as pigeonpea, peanut, cowpea and lupin were closely related. Subcellular localization results showed that GmMADS was expressed on the nucleus. Tissue-specific expression analysis showed that GmMADS had the highest expression in flowers. After soybean mosaic virus inoculation, the expression of GmMADS in resistant Kefeng 1 was highest at 2 h and significantly higher than the susceptible Nannong 1138-2. The expression of GmMADS was up-regulated at 2 h at low temperature stress, the expression of GmMADS was down-regulated at 1 h under salt stress and down-regulated at 2 h under drought stress. This study is important for the next step in analyzing the function of this gene and elucidating its molecular mechanism for regulating soybean disease resistance and tolerance.
参考文献/References:
[1]Shore P, Sharrocks A D. The MADS-box family of transcription factors[J]. European Journal of Biochemistry, 1995, 229(1): 1-13. 〖JP〗[2] Messenguy F, Dubois E . Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development[J]. Gene, 2003, 316(1):1-21.[3] Dong T, Hu Z, Deng L, et al. A tomato MADS-Box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening[J]. Plant Physiology, 2013, 163(2):1026-1036.[4] Dornelas M C, Patreze C M, Angenent G C, et al. MADS: The missing link between identity and growth?[J]. Trends in Plant Science, 2011, 16(2): 89-97.[5] Lu S J, Wei H, Wang Y, et al. Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.)[J]. Plant Molecular Biology Reporter, 2012, 30(6):1461-1469.[6] Masiero S, Colombo L, Grini P E, et al. The emerging importance of Type I MADS Box transcription factors for plant reproduction[J]. The Plant Cell, 2011, 23(3):865-872.[7] Zhu C, Perry S E. Control of expression and autoregulation of AGL15, a member of the MADS-box family[J]. The Plant Journal, 2005, 41(4): 583-594.[8] Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA[J]. The Plant Journal, 2003, 33(1): 47-59.[9] Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biological Chemistry, 1997, 378(10): 1079-1102.[10]Cho S, Jang S, Chae S, et al. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain[J]. Plant Molecular Biology, 1999, 40(3):419-429.[11]Lozano R. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes[J]. Plant Physiology, 1998, 117(1): 91-100.[12]Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics, 2007, 8(1): 242.[13]Tardif G, Kane N A, Hélène Adam, et al. Interaction network of proteins associated with abiotic stress response and development in wheat[J]. Plant Molecular Biology, 2007, 63(5): 703-718.[14]Lee B H , Henderson D A , Zhu J K . The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell, 2005, 17(11):3155-3175.[15]Lee S, Woo Y M, Ryu S I, et al. Further characterization of a rice AGL12 group MADS-Box gene, OsMADS26[J]. Plant Physiology, 2008, 147(1):156-168.[16]Khong G N, Pati P K, Richaud F, et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice[J]. Plant Physiology, 2015, 169(4): 2935-2949.[17]Zhang H, Teng W, Liang J, et al. MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpinXoo[J]. Journal of Experimental Botany, 2015, 67(1):131-141.[18]Wang D, Ma Y, Yang Y, et al. Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean[J]. Theoretical & Applied Genetics, 2011, 122(3):555-565.[19]Zhao L, Wang D, Zhang H, et al. Fine mapping of the RSC8 locus and expression analysis of candidate SMV resistance genes in soybean[J]. Plant Breeding, 2016, 135(6):701-706.[20]TheiBen G, Saedler H. Floral quartets[J]. Nature, 2001, 409:469-471.[21]Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens[J]. Current Opinion in Plant Biology, 1998, 1(4): 311-315.[22]Guo X, Chen G, Cui B, et al. Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance[J]. Molecular Breeding, 2016, 36(9):125.[23]Chen R, Ma J, Luo D, et al. CaMADS, a MADS-box transcription factor from pepper, plays an important role in the response to cold, salt, and osmotic stress[J]. Plant Science, 2019, 280: 164-174.[24]Jia J, Zhao P, Cheng L, et al. MADS-box family genes in sheepgrass and their involvement in abiotic stress responses[J]. BMC Plant Biology, 2018, 18(1): 42.[25]Qi Z, Yu J, Shen L, et al. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis[J]. Plant Science, 2017, 265:51-60.[26]Khong G N, Pati P K, Richaud F, et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice[J]. Plant Physiology, 2015, 169(4): 2935-2949.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2019-08-02