ZHANG Hai-ping,CHEN Yan,YAN Kai.Selection of SSR Markers for SCN4 Resistance and Identification of Excellent Resistant Germplasm[J].Soybean Science,2020,39(01):1-11.[doi:10.11861/j.issn.1000-9841.2020.01.0001]
大豆抗胞囊线虫4号生理小种SSR标记筛选及优异种质鉴定
- Title:
- Selection of SSR Markers for SCN4 Resistance and Identification of Excellent Resistant Germplasm
- 文献标志码:
- A
- 摘要:
- 大豆抗胞囊线虫的表型鉴定工作量较大,鉴定结果易受环境影响,是抗源筛选和抗病品种选育的限制因素之一。不受时间、环境限制的分子标记鉴定为抗病鉴定提供了一种高效快捷准确简单的鉴定方法。为筛选可用于抗大豆胞囊线虫4号生理小种分子标记引物,本研究采用基因型鉴定和人工接种鉴定相结合的方法鉴定193份大豆资源的大豆胞囊线豆抗性。以部分高抗大豆资源和高感资源为材料,对1 000对SSR引物进行初筛,用初筛获得的引物扩增193份抗、感大豆资源,筛选抗胞囊线虫4号生理小种(SCN 4)SSR标记引物,用于大豆抗胞囊线虫4号生理小种分子标记辅助鉴定。结果表明:筛选出4个与大豆胞囊线虫4号生理小种相关的SSR标记,分别为Satt400、Satt680、Satt533和Satt504。Satt400、Satt680、Satt533和Satt504对感病资源的检出率均为100%,对抗病资源的检出率分别为70.58%、63.15%、92.3%和57.14%。结合人工接种鉴定结果显示,4个标记组合鉴定可提高对胞囊线虫4号生理小种抗性的选择效率,达100%。经人工接种鉴定,从193份资源中筛选出12份抗病资源,其中10份资源为高抗,2份资源为中抗。这12份抗源的4个SSR标记带型均为抗病带型,其余感病和高感资源的4个SSR标记带型则至少有一个为感病带型。因此,利用分子标记评价抗感特性的标准为被1个或1个以上的感病带型检出的资源为感病资源,当4个标记均为抗病带型,该资源为抗病资源。利用该引物组合对山西省种质库提供的100份资源进行鉴定。筛选出4份抗源,人工接种鉴定结果表明,黑豆、小颗黑和晋1265(茶)3份资源抗性级别为高抗,大黑豆抗性级别为中抗。因此,该引物组合可有效辅助鉴定大豆对胞囊线虫4号生理小种的抗性。
- Abstract:
- The workload of phenotype identification of soybean resistance to cyst nematode is large, and the identification results are easily affected by the environment, which is one of the limiting factors for resistance source selection and resistance variety selection. Molecular marker identification without time and environment constraints provides an efficient, rapid, accurate and simple method of disease resistance identification. In order to screen molecular markers for distinguishing resistant resources from susceptible resources, identified the resistance to soybean cyst nematode of 193 soybean resource, part of the resistant resources and the high susceptible resources were genotyped by 1 000 SSR markers and 7 SSR markers that can distinguish SCN4 resistance sources from susceptible sources were found. Then, 193 soybean resources were genotyped by the 7 SSR markers. The results showed that 4 markers, Satt400, Satt680, Satt533 and Satt504, were selected. The selection efficiency of susceptible resources with Satt400, Satt680, Satt533 and Satt504 was all 100%. The selection efficiency of resistant resources with Satt400, Satt680, Satt533 and Satt504 was 70.58%, 63.15%, 92.3% and 57.14% respectively. The combination of 4 markers could add the selection efficiency to resistant resources, and the selection efficiency was up to 100%. Combined with artificial inoculation identification, 12 of the 193 soybean resources were identified as resistant resources. These 12 resistant resources were all detected with resistant alleles at four loci and other resources were detected with at least one susceptible allele of the four loci. Therefore, the resources were considered as resistant resources which were all detected with resistant alleles of the four loci and the resources were considered as susceptible resources which were detected with at least one susceptible allele of the four loci. 100 resources from Shanxi crop gene bank were genotyped by the 4 markers. Four resources, Heidou, Xiaokehei, Jin1265 and Daheidou, were identified as resistant resources. Then, the resistance to SCN4 of the 4 resources was identified by artificial inoculation. The results showed that the resistance of Heidou, Xiaokehei and Jin1265 were high, and the resistance of Daheidou was middle. It is considered that the combinated markers could be used in marker-assisted selection of resistant germplasm.
参考文献/References:
[1]孙漫红, 刘杏忠, 缪作清. 大豆胞囊线虫病生物防治研究进展[J].中国生物防治, 2000, 16(3): 136-141.(Sun M H, Liu X Z, Miu Z Q. Biological control of soybean cyst nematode[J]. Chinese Journal of Biological Control, 2000, 16(3): 136-141.)[2] Li Y H, Qi X T, Chang R Z, et al. Evaluation and utilization of soybean germplasm for resistance to cyst nematode in China[A]. Sudaric A. Soybean-molecular aspects of breeding[C]. Croatia: InTech, 2011:373-396.[3] 练云, 王金社, 李海朝, 等. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查[J]. 作物学报, 2016, 42(10): 1479-1486.(Lian Y, Wang J S, Li H C, et al. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai rivers valley[J]. Acta Agronomica Sinica, 2016, 42(10): 1479-1486.)[4] 邱丽娟, 常汝镇, 王文辉, 等. 大豆抗胞囊线虫病种质rhg1 和Rhg4 位点的单核苷酸多态性(SNPs)[J]. 植物遗传资源学报, 2003, 4(2): 89-93.(Qiu L J, Chang R Z, Wang W H, et al. Single nucleotide polymorphism (SNPs) at both loci of rhg1 and Rhg4 in soybean resistant germplasm[J]. Journal of Plant Genetic Resources, 2003, 4(2): 89-93.)[5] 王惠, 于佰双, 段玉玺, 等. 大豆胞囊线虫抗性基因的SSR 标记研究[J]. 大豆科学, 2007, 26(2): 204-212. (Wang H, Yu B S, Duan Y X, et al. A sensitive molecular marker SSR associated with resistant gene to Heterodera Glycines[J]. Soybean Science, 2007, 26(2): 204-212.)[6] Cook D E, Lee T G, Guo X,et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338: 1206-1209.[7] Liu S M, Kandoth P K, Warren S D E, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012,492(7428): 256-260.[8] Cregan P B, Mudge J, Fickus E W, et al. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus[J]. Theoretical and Applied Genetics, 1999, 99: 811-818.[9] 王文辉, 邱丽娟, 常汝镇, 等. 中国大豆种质抗SCN基因 rhg1 位点SSR标记等位变异特点分析[J]. 大豆科学, 2003, 22(4): 246-250.(Wang W H, Qiu L J, Chang R Z, et al. Characteristics of alleles at Satt309 locus associated with rhg1 gene resistant to SCN of Chinese soybean germplasm[J]. Soybean Science, 2003, 22(4): 246-250.) [10]张彦威, 李伟, 郭军贤, 等. 大豆种质对胞囊线虫1 号生理小种抗性的SSR标记辅助鉴定[J]. 山东农业科学, 2015, 47(5): 86-88. (Zhang Y W, Li W, Guo J X, et al. SSR marker assisted identification on resistance of soybean cultivars to soybean cyst nematode race 1[J]. Shandong Agricultural Sciences, 2015, 47(5): 86-88.)[11]南海洋, 李英慧, 常汝镇, 等. 基于大豆胞囊线虫病抗性候选基因rhg1的InDel 标记开发与鉴定[J]. 作物学报, 2009, 35(7): 1236-1243.(Nan H Y, Li Y H, Chang R Z, et al. Development and identification of InDel markers based on rhg1 gene for resistance to soybean cyst nematode (Heterodera glycines Ichinohe) [J]. Acta Agronomica Sinica, 2009, 35(7): 1236-1243.)[12]马岩松, 刘鑫磊, 栾晓燕, 等. 大豆胞囊线虫病抗性基因相关分子标记对杂交后代抗性的鉴定效率[J]. 大豆科学, 2014, 33(20): 173-178.(Ma Y S, Liu X L, Luan X Y, et al. Identification efficiency about resistance to soybean cyst nematode with relative molecular markers in hybrid progeny[J]. Soybean Science, 2014, 33(20): 173-178.)[13]Li Y H, Zhang C, Gao Z, et al. Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean[J]. Molecular Breeding, 2009, 24(1): 63-76.[14]史学晖, 李英慧, 于佰双,等. 大豆胞囊线虫主效抗病基因Rhg4 (GmSHMT)的CAPS/dCAPS 标记开发和利用[J]. 作物学报, 2015, 41(10): 1463-1471.(Shi X H, Li Y H, Yu B S, et al. Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genes Rhg4[J]. Acta Agronomica Sinica, 2015, 41(10): 1463-1471.)[15]Shi Z, Liu S M, Noe J, et al. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J]. BMC Genomics, 2015, 16: 314-326.[16]Li Y H, Shi X H, Li H H, et al. Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping[J]. The Plant Genome, 2016, 9(2). DOI:10.3835/plantgenome 2015. 3804.0020.[17]田宇, 杨蕾, 李英慧, 等. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.(Tian Y, Yang L, Li Y H, et al. Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode[J]. Acta Agronomica Sinica, 2018, 44(11): 1600-1611.)[18]Riggs R D, Schmitt D P. Complete characterization of the race scheme for Heterodera glycines[J]. Journal of Nematology, 1988, 20(3): 392.[19]Schmitt D P, Shannon G. Differentiating soybean responses to Heterodera glycines races[J]. Crop Science, 1992, 32: 275-277.[20]蒙忻, 刘学义, 方宣钧. 利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL[J]. 分子植物育种, 2003, 1(1): 6-21.(Meng X, Liu X Y, Fang X J. QTL mapping genes conferring resistance to race 4 of soybean cyst nematode in soybean ZDD2315 [Glycine max (L)Merr.] based on public molecular genetic linkage map[J]. Molecular Plant Breeding, 2003, 1(1): 6-21.)[21]Anand S C, Arellin A P. Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5[J]. Crop Science, 1989, 29(5): 1181-1184.[22]Concibiodo V C,Diers B W, Arellip R. A decade of QTL mapping for cyst nematode resistance in soybean[J]. Crop Science, 2004, 44(4): 1121-1131. [23]Concibido V C, Lange D A, Denny R L. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763 and PI 88788 using DNA markers[J]. Crop Science, 1997, 37(1): 258-264.[24]Vuong T D, Sleper D A, Shannon J G, et al. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C[J]. Theoretical and Applied Genetics, 2010, 121(7): 1253-1266.[25]Masonbrink R, Maier T R, Muppirala U, et al. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes[J]. BMC Genomics, 2019, 20: 119. [26]任海红, 刘学义, 朱保葛, 等. 大豆百粒重相关分子标记的实用性分析与验证[J]. 分子植物育种, 2014,12(1): 69-73.(Ren H H, Liu X Y, Zhu B G, et al. Practical analysis & verification of molecular marker of weight of 100-seed in soybean[J]. Molecular Plant Breeding, 2014,12(1): 69-73.)[27]Winter S M J, Shelp B J, Anderson T R, et al. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI 464925B[J]. Theoretical and Applied Genetics, 2007, 114(3): 461-472.[28]Jiang Z F, Han Y P, Teng W L, et al. Identification of QTL underlying the filling rate of protein at different developmental stages of soybean seed[J]. Euphytica, 2010, 175(2): 227-236.[29]Yamanaka N, Ninomiya S, Hoshi M, et al. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion[J]. DNA Research, 2001, 2(8): 61-72.[30]〖JP2〗Tasma I M, Lorenzen L L, Green D E, et al. Mapping genetic locifor flowering time, maturity, and photoperiod insensitivity in soybean[J]. Molecular Breeding, 2001, 8(1): 25-35.[31]Webb D M, Baltazar B M, Arelli P R, et al. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437654[J]. Theoretical and Applied Genetics, 1995, 91(4): 574- 81. [32]Abdelmajid K, Ramos L, Hyten D, et al. Quantitative trait loci (QTL) that underlie SCN resistance in soybean [Glycine max (L.) Merr.] PI 438489B by Hamilton recombinant inbred line (RIL) population[J]. Atlas Journal of Plant Biology, 2014, 1(3): 29-38.[33]Ferreira M, Cervigni G, Ferreira A, et al. QTL for resistance to soybean cyst nematode races 3, 9, and 14 in cultivar Hartwig[J]. Pesquisa Agropecuaria Brasileira, 2011, 46(4): 420-428.[34]Li X H, Kamala S, Tian R, et al. Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean[J]. Molecular Breeding, 2018, 38: 8-22.[35]Fan S X, Li B, Yu F K, et al. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments[J]. Euphytica, 2015, 206(3): 689-700.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]李 凯,刘志涛,李海朝,等.国家大豆区域试验品种对SMV和SCN的抗性分析[J].大豆科学,2013,32(05):670.[doi:10.11861/j.issn.1000-9841.2013.05.0670]
LI Kai,LIU Zhi-tao,LI Hai-chao,et al.Resistance to Soybean Mosaic Virus and Soybean Cyst Nematode of Soybean Cultivars from China National Soybean Uniform Trials[J].Soybean Science,2013,32(01):670.[doi:10.11861/j.issn.1000-9841.2013.05.0670]
[12]李泽宇,李肖白,陈井生,等.大豆品种(系)抗大豆胞囊线虫14号生理小种的抗性鉴定研究[J].大豆科学,2014,33(03):408.[doi:10.11861/j.issn.1000-9841.2014.03.0408]
LI Ze-yu,LI Xiao-bai,CHEN Jing-sheng,et al.Identification of Soybean Varieties for Resistance to Soybean Cyst Nematode Races 14[J].Soybean Science,2014,33(01):408.[doi:10.11861/j.issn.1000-9841.2014.03.0408]
[13]胡 新,许艳丽,LI Shu-xian,等.利用抗感品种混种防治大豆胞囊线虫效果的研究[J].大豆科学,2012,31(03):449.[doi:10.3969/j.issn.1000-9841.2012.03.023]
HU Xin,XU Yan-li,LI Shu-xian,et al.Effect of Cultivar Mixture on Growth and Developoment of Soybean Inoculated with Soybean Cyst Nematode[J].Soybean Science,2012,31(01):449.[doi:10.3969/j.issn.1000-9841.2012.03.023]
[14]马雪瑞,段玉玺,陈立杰,等.利用抗坏血酸揭示小粒黑豆对胞囊线虫抗性的研究[J].大豆科学,2011,30(01):123.[doi:10.11861/j.issn.1000-9841.2011.01.0123]
MA Xue-rui,DUAN Yu-xi,CHEN Li-jie,et al.Revealing Resistance of Xiaoliheidou to Soybean Cyst Nematode by Ascorbic Acid[J].Soybean Science,2011,30(01):123.[doi:10.11861/j.issn.1000-9841.2011.01.0123]
[15]陈立杰,万传浩,朱晓峰,等.Snea253生物种衣剂防治大豆胞囊线虫的研究[J].大豆科学,2011,30(03):459.[doi:10.11861/j.issn.1000-9841.2011.03.0459]
CHEN Li-jie,WAN Chuan-hao,ZHU Xiao-feng,et al.Control Effects of Snea253 Biological Seed Coating on Soybean Cyst Nematode[J].Soybean Science,2011,30(01):459.[doi:10.11861/j.issn.1000-9841.2011.03.0459]
[16]袁翠平,沈波,董英山.中国大豆抗(耐)胞囊线虫病品种及其系谱分析[J].大豆科学,2009,28(06):1049.[doi:10.11861/j.issn.1000-9841.2009.06.1049]
YUAN Cui-ping,SHEN Bo,DONG Ying-shan.Released Soybean Varieties Resistant to Cyst Nematode in China and Their Resistance Genetic Derivation[J].Soybean Science,2009,28(01):1049.[doi:10.11861/j.issn.1000-9841.2009.06.1049]
[17]刘大伟,段玉玺,陈立杰,等.灰皮支黑豆抗大豆胞囊线虫3号生理小种的生理机制[J].大豆科学,2010,29(03):471.[doi:10.11861/j.issn.1000-9841.2010.03.0471]
LIU Da-wei,DUAN Yu-xi,CHEN Li-jie,et al.Physiological Mechanism of HuipizhiHeidou Resistant to Race 3 of Soybean Cyst Nematode[J].Soybean Science,2010,29(01):471.[doi:10.11861/j.issn.1000-9841.2010.03.0471]
[18]于佰双 段玉玺,王家军,李进荣,等.轮作植物对大豆胞囊线虫抑制作用的研究[J].大豆科学,2009,28(02):256.[doi:10.11861/j.issn.1000-9841.2009.02.0256]
YU Bai-shuang,DUAN Yu-xi,WANG Jia-jun,et al.Rotation Crop Evaluation for Management of the Soybean Cyst Nematode[J].Soybean Science,2009,28(01):256.[doi:10.11861/j.issn.1000-9841.2009.02.0256]
[19]王雪,段玉玺,陈立杰,等.不同大豆品种根系对大豆胞囊线虫趋化性的影响[J].大豆科学,2008,27(06):1015.[doi:10.11861/j.issn.1000-9841.2008.06.1015]
WANG Xue,DUAN Yu-xi,CHEN Li-jie,et al.Effects of Root from Different Soybean Cultivars on the Affinity Between Soybean Cyst Nematode and Soybean Root[J].Soybean Science,2008,27(01):1015.[doi:10.11861/j.issn.1000-9841.2008.06.1015]
[20]王惠,于佰双,段玉玺,等.大豆胞囊线虫抗性基因的SSR标记研究[J].大豆科学,2007,26(02):204.[doi:10.3969/j.issn.1000-9841.2007.02.018]
WANG Hui,YU Bai-shuang,DUAN Yu-xi,et al.A SENSITIVE MOLECULAR MARKER SSR ASSOCIATED WITH RESISTANT GENE TO HETERODERA GLYCINES[J].Soybean Science,2007,26(01):204.[doi:10.3969/j.issn.1000-9841.2007.02.018]
备注/Memo
收稿日期:2019-08-05