[1]孙彦波,李忠峰,王俊,等.基于TILLING技术筛选大豆GmAGL15基因突变体[J].大豆科学,2019,38(06):906-913.[doi:10.11861/j.issn.1000-9841.2019.06.0906]
 SUN Yan-bo,LI Zhong-feng,WANG Jun,et al.Screening AGL15Mutant in Soybean by TILLING[J].Soybean Science,2019,38(06):906-913.[doi:10.11861/j.issn.1000-9841.2019.06.0906]
点击复制

基于TILLING技术筛选大豆GmAGL15基因突变体

参考文献/References:

[1]朱浩哲, 黄初女, 王光达, 等. 浅谈大豆蛋白质品质改良[J]. 吉林农业科学, 2006, 31(1): 4-8. (Zhu H Z, Huang C N, Wang G D, et al. Talking about the improvement of soybean protein quality[J]. Journal of Jilin Agricultural Sciences, 2006, 31(1): 4-8.)[2]Wobus U, Weber H. Seed maturation: Genetic programmes and control signals[J]. Current Opinion in Plant Biology, 1999, 2(1): 33-38.[3]Lotan T , Ohto M , Yee K M , et al. Arabidopsis LEAFY COTYLEDON1is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7): 1195-1205.[4]Luerssen H, Kirik V, Herrmann P, et al. FUSCA3, encodes a protein with a conserved VP1/ABI3_like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana[J]. The Plant Journal, 1998, 15(6): 10.[5]Stone S L, Kwong L W, Yee K M, et al. LEAFY COTYLEDON2encodes a B3 domain transcription factor that induces embryo development[J]. Proceedings of the National Academy of Sciences, 2001, 98(20): 11806-11811.[6]Finkelstein R, Reeves W, Ariizumi T . Molecular aspects of seed dormancy[J]. Annual Review of Plant Biology, 2008, 59(59): 387-415.[7]Heck G R, Perry S E, Nichols K W, et al. AGL15, a MADS domain protein expressed in developing embryos[J]. The Plant Cell, 1995, 7(8): 1271-1282.[8]Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development[J]. Gene, 2003, 316(1): 1-21.[9]Nardeli S M, Artico S, Aoyagi G M, et al. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum, and Gossypium raimondii)[J]. Plant Physiology & Biochemistry, 2018, 127: 169-184.[10]Holdsworth M J, Leónie B, Soppe W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. The New Phytologist, 2008, 179(1): 33-54.[11]Harding E W, Tang W, Nichols K W, et al. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15[J]. Plant Physiology, 2003, 133(2): 653-663.[12]Mccallum C M, Comai L, Greene E A, et al. Targeting induced local lesions in genomes (TILLING) for plant functional genomics[J]. Plant Physiology, 2000, 123(2): 439-442.[13]Hdrich N, Gibon Y, Schudoma C, et al. Use of TILLING and robotised enzyme assays to generate an allelic series of Arabidopsis thaliana mutants with altered ADP-glucose pyrophosphorylase activity[J]. Journal of Plant Physiology, 2011, 168(12):1395-1405.[14]Lai K S, Kaothien-Nakayama P, Iwano M, et al. A TILLING resource for functional genomics in Arabidopsis thaliana accession C24[J]. Genes & Genetic Systems, 2012, 87(5): 291-297.[15]Martín B, Ramiro M, Martínezzapater J M, et al. A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis[J]. BMC Plant Biology, 2009, 9(1):147.[16]Till B J, Reynolds S H, Weil C, et al. Discovery of induced point mutations in maize genes by TILLING[J]. BMC Plant Biology, 2004, 4:12-19.[17]Peter C, Tai T H, Jennifer C, et al. Discovery of chemically induced mutations in rice by TILLING[J]. BMC Plant Biology, 2007, 7:19-30.[18]Uauy C, Paraiso F, Colasuonno P, et al. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat[J]. BMC Plant Biology, 2009, 9:115-128.[19]Dong C M, Daltonmorgan J, Vincent K, et al. A modified TILLING method for wheat breeding[J]. Plant Genome, 2009, 2(1):39-47.[20]Suzuki T, Eiguchi M, Kumamaru T, et al. MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice[J]. Molecular Genetics & Genomics, 2008, 279(3): 213-223.[21]Stephenson P, Baker D, Girin T, et al. A rich TILLING resource for studying gene function in Brassica rapa[J]. BMC Plant Biology, 2010, 10(1): 62.[22]Cooper J L, Till B J, Laport R G, et al. TILLING to detect induced mutations in soybean[J]. BMC Plant Biology, 2008, 8(1): 9.[23]Bilyeu K D, Dierking E C. New sources of soybean seed meal and oil composition traits identified through TILLING[J]. BMC Plant Biology, 2009, 9(1): 1-11.[24]Lakhssassi N, Zhou Z, Liu S, et al. Characterization of the FAD2gene family in soybean reveals the limitations of gel-based TILLING in genes with high copy number[J]. Frontiers in Plant Science, 2017, 8: 324.[25]Jiang G Q, Yao X F, Liu C M. A simple CEL I endonuclease-based protocol for genotyping both SNPs and InDels[J]. Plant Molecular Biology Reporter, 2013, 31(6): 1325-1335.[26]Anai T. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean[J]. Breeding Science, 2012, 61(5): 462-467.[27]Dreni L, Zhang D. Flower development: The evolutionary history and functions of the AGL6subfamily MADS-box genes[J]. Journal of Experimental Botany, 2016, 67(6): 1625-1638.[28]Zeng X, Liu H, Du H, et al. Soybean MADS-box gene GmAGL1promotes flowering via the photoperiod pathway[J]. BMC Genomics, 2018, 19(1): 51.[29]Perry S E, Zheng Q, Zheng Y. Transcriptome analysis indicates that GmAGAMOUS-Like 15may enhance somatic embryogenesis by promoting a dedifferentiated state[J]. Plant Signaling & Behavior, 2016, 11(7): e1197463.[30]Chen N, Veerappan V, Abdelmageed H, et al. HSI2/VAL1 silences AGL15to regulate the developmental transition from seed maturation to vegetative growth in Arabidopsis[J]. The Plant Cell, 2018, 30(3): 600-619.[31]Wang H, Tang W, Zhu C, et al. A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos[J]. The Plant Journal, 2002, 32(5): 13.[32]汪潇琳, 陈艳萍, 喻德跃. MADS-box基因GmAGL15在大豆种子发育过程中的表达[J]. 作物学报, 2008, 34(2): 330-332.(Wang X L, Chen Y P, Yu D Y. Expression of the MADS-Box gene GmAGL15in seed development of soybean[J]. Acta Agronomica Sinica, 2008, 34(2): 330-332.)[33]Fernandez D E, Heck G R, Perry S E, et al. The embryo MADS domain factor AGL15acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression[J]. The Plant Cell, 2000, 12(2):183-197.[34]王有伟, 苗燕妮, 江鹏, 等. 水稻产量、蛋白质及食味特性的关联研究[J]. 中国农学通报, 2017, 33(5): 1-5. (Wang Y W, Miao Y N, Jiang P, et al. Correlation studies on yield, protein and palatability of rice[J]. Chinese Agricultural Sicence Bulletin, 2017, 33(5): 1-5.)[35]Wilcox J R, Cavins J F. Backcrossing high seed protein to a soybean cultivar[J]. Crop Science, 1995, 35(4): 1036-1041.[36]郭小红. 不同年代育成大豆品种农艺性状和产量的比较[D]. 沈阳: 沈阳农业大学, 2017. (Guo X H. Comparison on agronomic traits and yield of soybean cultivars developed in different years[D]. Shenyang: Shenyang Agricultural University, 2017.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]朱命喜,刘洋,吴琼,等.大豆SBP转录因子家族的预测分析[J].大豆科学,2011,30(02):177.[doi:10.11861/j.issn.1000-9841.2011.02.0177]
 ZHU Ming-xi,LIU Yang,WU Qiong,et al.Forecasting Analysis of SBP Transcription Factor Families in Soybean[J].Soybean Science,2011,30(06):177.[doi:10.11861/j.issn.1000-9841.2011.02.0177]
[12]赵艳,刘晓鑫,张庆林,等.大豆种子特异性启动子研究进展[J].大豆科学,2010,29(01):151.[doi:10.11861/j.issn.1000-9841.2010.01.0151]
 ZHAO Yan,LIU Xiao-xin,ZHANG Qing-lin,et al.Advances of Studies on Seed-specific Promoters of Soybean[J].Soybean Science,2010,29(06):151.[doi:10.11861/j.issn.1000-9841.2010.01.0151]
[13]刘德泉,郭文云,何则铭,等.大豆胚发育期酵母双杂文库的构建及与bHLH转录因子互作蛋白的筛选[J].大豆科学,2015,34(05):789.[doi:10.11861/j.issn.1000-9841.2015.05.0789]
 LIU De-quan,GUO Wen-yun,HE Ze-ming,et al.Yeast Two-hybrid cDNA Library Construction of Soybean Embryo Developmental Phase and Screening of Proteins Interacting with Soybean bHLH Transcription Factor[J].Soybean Science,2015,34(06):789.[doi:10.11861/j.issn.1000-9841.2015.05.0789]
[14]成舒飞,端木慧子,陈超,等.大豆MYB转录因子的全基因组鉴定及生物信息学分析[J].大豆科学,2016,35(01):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
 CHENG Shu-fei,DUANMU Hui-zi,CHEN Chao,et al.Whole Genome Identification of Soybean MYB Transcription Factors and Bioinformatics Analysis[J].Soybean Science,2016,35(06):52.[doi:10.11861/j.issn.1000-9841.2016.01.0052]
[15]邢馨竹,杨占武,杜 汇,等.转录因子GmPTF1促进大豆结瘤固氮功能研究[J].大豆科学,2023,42(06):653.[doi:10.11861/j.issn.1000-9841.2023.06.0653]

备注/Memo

基金项目:大豆种质资源保护与利用(2019NWB036);国家农作物资源共享平台(NICGR2019)。第一作者简介:孙彦波(1991-),男,硕士,主要从事大豆突变体筛选和鉴定研究。E-mail:1012080725@qq.com。通讯作者:邱丽娟(1963-),女,博士,研究员,主要从事大豆基因资源发掘与利用研究。E-mail:qiulijuan@caas.cn。

更新日期/Last Update: 1900-01-01