[1]金玲,张浩,王松明,等.大豆GmAMS基因及其启动子的克隆和表达分析[J].大豆科学,2019,38(06):889-897.[doi:10.11861/j.issn.1000-9841.2019.06.0889]
 JIN Ling,ZHANG Hao,WANG Song-ming,et al.Cloning and Expression Analysis of GmAMS Gene and Its Promoter in Soybean[J].Soybean Science,2019,38(06):889-897.[doi:10.11861/j.issn.1000-9841.2019.06.0889]
点击复制

大豆GmAMS基因及其启动子的克隆和表达分析

参考文献/References:

[1]刘永明, 张玲, 周建瑜, 等. 植物细胞核雄性不育相关bHLH转录因子研究进展[J]. 遗传, 2015, 37(12):1194-1203. (Liu Y M, Zhang L, Zhou J Y, et al. Research progress of the bHLH transcription factors involved in genic male sterility in plants[J]. Hereditas, 2015,37(12):1194-1203.)[2]Carretero P L, Galstyan A, Roig V I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology, 2010, 153(3):1398-1412.[3]Sun H, Fan H J, Ling H Q. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics, 2015, 16:9.[4]Jiang Y, Zeng B, Zhao H, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. Journal of Integrative Plant Biology, 2012, 54(9):616-630.[5]Hudson K A, Hudson M E. A classification of basic helix-loop-helix transcription factors of soybean[J]. International Journal of Genomics, 2015:603182.[6]Song X M, Huang Z N, Duan W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Molecular Genetics and Genomics, 2014, 289(1):77-91.[7]Sorensen A M, Krober S, Unte U S, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant Journal, 2003, 33(2):413-423.[8]Li N, Zhang D S, Liu H S, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell, 2006, 18(11):2999-3014.[9]Guo J J, Liu C, Wang P, et al. The Aborted Microspores (AMS)-like gene is required for anther and microspore development in pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences, 2018, 19(5) :1341.[10]Zhang W, Sun Y, Timofejeva L, et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1)encoding a putative bHLH transcription factor[J]. Development, 2006, 133(16):3085-3095.[11]Zhang Z B, Zhu J, Gao J F, et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis[J]. Plant Journal, 2007, 52(3):528-538.[12]Zhu J, Chen H, Li H, et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis[J]. Plant Journal, 2008, 55(2):266-277.[13]Yang C Y, Vizcay B G, Conner K, et al. MALE STERILITY1is required for tapetal development and pollen wall biosynthesis[J]. Plant Cell, 2007, 19(11):3530-3548.[14]Zhu J, Lou Y, Xu X, et al. A genetic pathway for tapetum development and function in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011, 53(11):892-900.[15]Jung K H, Han M J, Lee Y S, et al. Rice Undeveloped Tapetum1is a major regulator of early tapetum development[J]. Plant Cell, 2005, 17(10):2705-2722.[16]Niu N, Liang W, Yang X, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nature Communications, 2013, 4:1445.[17]Li X, Duan X, Jiang H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiology, 2006, 141(4):1167-1184.[18]程琳, 薛亚杰, 付觉民, 等. 大豆bHLH转录因子家族成员的进化及功能分化研究[J]. 信阳师范学院学报(自然科学版), 2019, 32(1):27-38. (Cheng L, Xue Y J, Fu J M, et al. Evolution and function divergence analysis of the bhlh transcription factor family in soybean (Glycine max L.) [J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(1):27-38.)[19]Ferguson A C, Pearce S, Band L R, et al. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis[J]. New Phytologist, 2017, 213(2):778-790.[20]Chou K C, Shen H B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6):e11335.[21]van Bel M, Diels T, Vancaester E, et al. PLAZA 4.0: An integrative resource for functional, evolutionary and comparative plant genomics[J]. Nucleic Acids Research, 2018, 46(D1):D1190-D1196.[22]Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1998, 16(6):735-743.[23]Jefferson R A, Kavanagh T A, Bevan M W. Gus fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal, 1987, 6(13):3901-3907.[24]Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 2003, 20(5):735-747.[25]Menand B, Yi K, Jouannic S, et al. An ancient mechanism controls the development of cells with a rooting function in land plants[J]. Science, 2007, 316(5830):1477-1480.[26]Colangelo E P, Guerinot M L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. Plant Cell, 2004, 16(12):3400-3412.[27]Li F, Guo S Y, Zhao Y, et al. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2010, 29(9):977-986.[28]Moon J, Skibbe D, Timofejeva L, et al. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize[J]. Plant Journal, 2013, 76(4):592-602.[29]Jeong H J, Kang J H, Zhao M, et al. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers[J]. Journal of Experimental Botany, 2014, 65(22):6693-6709.[30]Liu T, Li Y, Zhang C, et al. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage[J]. Functional and Integrative Genomics, 2014, 14(4):731-739.[31]Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal, 2011, 66(1):94-116.[32]Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 2003, 20(5):735-747.[33]Xu J, Ding Z, Vizcay B G, et al. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis[J]. Plant Cell, 2014, 26(4):1544-1556.[34]Morant M, Jorgensen K, Schaller H, et al. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J]. Plant Cell, 2007, 19(5):1473-1487.[35]Zhao D Z, Wang G F, Speal B, et al. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes and Development, 2002, 16(15):2021-2031.[36]Istrail S, Davidson E H. Logic functions of the genomic cis-regulatory code[J]. Proceedings of the National Academy of Sciences, 2005, 102(14):4954-4959.[37]Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science, 2005, 10(5):236-242.[38]Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany, 2011, 62(8):2465-2483.[39]Xiong S X, Lu J Y, Lou Y, et al. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana[J]. Plant Journal, 2016, 88(6):936-946.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:国家重点研发计划(2016YFD0101500,2016YFD0101504);中央高校基本科研业务费专项资金(KYT201801);长江学者和创新团队发展计划(PCSIRT_17R55)。第一作者简介:金玲(1993-),女,硕士,主要从事大豆分子遗传育种研究。E-mail:msjinling@163.com。通讯作者:杨守萍(1967-),女,博士,教授,主要从事大豆遗传育种研究。E-mail: spyung@126.com。

更新日期/Last Update: 1900-01-01