JIN Ling,ZHANG Hao,WANG Song-ming,et al.Cloning and Expression Analysis of GmAMS Gene and Its Promoter in Soybean[J].Soybean Science,2019,38(06):889-897.[doi:10.11861/j.issn.1000-9841.2019.06.0889]
大豆GmAMS基因及其启动子的克隆和表达分析
- Title:
- Cloning and Expression Analysis of GmAMS Gene and Its Promoter in Soybean
- Keywords:
- Soybean; GmAMS gene; Promoter; Gene cloning; Expression analysis
- 摘要:
- bHLH(basic Helix-Loop-Helix)转录因子在植物雄配子发育中具有重要的调控作用。为探究bHLH转录因子在大豆花发育中的作用,以大豆细胞质雄性不育系NJCMS5A的花芽cDNA和叶片DNA为模板,通过RT-PCR克隆得到具有典型bHLH结构域的GmAMS基因及其启动子区域,并进行生物信息学分析和时空表达分析。生物信息学分析结果显示GmAMS基因的编码区序列全长为1 716 bp,编码571个氨基酸。亚细胞定位预测GmAMS位于细胞核中。荧光定量分析结果显示,相对于保持系NJCMS5B,在不育系NJCMS5A的花芽中GmAMS基因的表达水平显著下调。组织化学染色结果表明GmAMS启动子驱动的GUS蛋白主要集中在转基因拟南芥的幼小花药中表达。研究结果为进一步探究GmAMS在大豆花发育中的生物学功能和调控机制奠定了基础。
- Abstract:
- The basic Helix-Loop-Helix(bHLH) transcription factor plays an important role in the regulation of male gamete development in plants. In order to explore the role of bHLH transcription factor in the flower development of soybean, the transcription factor GmAMS gene with typical bHLH domain and its promoter were cloned by RT-PCR using cDNA from the flower bud and DNA from the leaf of soybean cytoplasmic male sterile line NJCMS5A as the template. Bioinformatics analysis and spatiotemporal expression analysis of GmAMS gene were conducted. The results of bioinformatics analysis showed that the coding region sequence (CDS) of GmAMS gene was 1 716 bp in length, encoding 571 amino acids. Subcellular localization prediction results showed that GmAMS was localized in the nucleus. Real-time fluorescence quantification analysis showed that the expression level of GmAMS gene in the flower bud of NJCMS5A was significantly downregulated compared with the maintainer line NJCMS5B. Histochemical staining results showed that the GUS protein driven by GmAMS promoterwas mainly expressed at the early anther development stage.The above results provided the foundation for further study on the biological function and regulation mechanism of GmAMS gene in the flower development of soybean.
参考文献/References:
[1]刘永明, 张玲, 周建瑜, 等. 植物细胞核雄性不育相关bHLH转录因子研究进展[J]. 遗传, 2015, 37(12):1194-1203. (Liu Y M, Zhang L, Zhou J Y, et al. Research progress of the bHLH transcription factors involved in genic male sterility in plants[J]. Hereditas, 2015,37(12):1194-1203.)[2]Carretero P L, Galstyan A, Roig V I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology, 2010, 153(3):1398-1412.[3]Sun H, Fan H J, Ling H Q. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics, 2015, 16:9.[4]Jiang Y, Zeng B, Zhao H, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. Journal of Integrative Plant Biology, 2012, 54(9):616-630.[5]Hudson K A, Hudson M E. A classification of basic helix-loop-helix transcription factors of soybean[J]. International Journal of Genomics, 2015:603182.[6]Song X M, Huang Z N, Duan W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Molecular Genetics and Genomics, 2014, 289(1):77-91.[7]Sorensen A M, Krober S, Unte U S, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant Journal, 2003, 33(2):413-423.[8]Li N, Zhang D S, Liu H S, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell, 2006, 18(11):2999-3014.[9]Guo J J, Liu C, Wang P, et al. The Aborted Microspores (AMS)-like gene is required for anther and microspore development in pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences, 2018, 19(5) :1341.[10]Zhang W, Sun Y, Timofejeva L, et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1)encoding a putative bHLH transcription factor[J]. Development, 2006, 133(16):3085-3095.[11]Zhang Z B, Zhu J, Gao J F, et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis[J]. Plant Journal, 2007, 52(3):528-538.[12]Zhu J, Chen H, Li H, et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis[J]. Plant Journal, 2008, 55(2):266-277.[13]Yang C Y, Vizcay B G, Conner K, et al. MALE STERILITY1is required for tapetal development and pollen wall biosynthesis[J]. Plant Cell, 2007, 19(11):3530-3548.[14]Zhu J, Lou Y, Xu X, et al. A genetic pathway for tapetum development and function in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011, 53(11):892-900.[15]Jung K H, Han M J, Lee Y S, et al. Rice Undeveloped Tapetum1is a major regulator of early tapetum development[J]. Plant Cell, 2005, 17(10):2705-2722.[16]Niu N, Liang W, Yang X, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nature Communications, 2013, 4:1445.[17]Li X, Duan X, Jiang H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiology, 2006, 141(4):1167-1184.[18]程琳, 薛亚杰, 付觉民, 等. 大豆bHLH转录因子家族成员的进化及功能分化研究[J]. 信阳师范学院学报(自然科学版), 2019, 32(1):27-38. (Cheng L, Xue Y J, Fu J M, et al. Evolution and function divergence analysis of the bhlh transcription factor family in soybean (Glycine max L.) [J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(1):27-38.)[19]Ferguson A C, Pearce S, Band L R, et al. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis[J]. New Phytologist, 2017, 213(2):778-790.[20]Chou K C, Shen H B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6):e11335.[21]van Bel M, Diels T, Vancaester E, et al. PLAZA 4.0: An integrative resource for functional, evolutionary and comparative plant genomics[J]. Nucleic Acids Research, 2018, 46(D1):D1190-D1196.[22]Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1998, 16(6):735-743.[23]Jefferson R A, Kavanagh T A, Bevan M W. Gus fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal, 1987, 6(13):3901-3907.[24]Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 2003, 20(5):735-747.[25]Menand B, Yi K, Jouannic S, et al. An ancient mechanism controls the development of cells with a rooting function in land plants[J]. Science, 2007, 316(5830):1477-1480.[26]Colangelo E P, Guerinot M L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. Plant Cell, 2004, 16(12):3400-3412.[27]Li F, Guo S Y, Zhao Y, et al. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2010, 29(9):977-986.[28]Moon J, Skibbe D, Timofejeva L, et al. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize[J]. Plant Journal, 2013, 76(4):592-602.[29]Jeong H J, Kang J H, Zhao M, et al. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers[J]. Journal of Experimental Botany, 2014, 65(22):6693-6709.[30]Liu T, Li Y, Zhang C, et al. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage[J]. Functional and Integrative Genomics, 2014, 14(4):731-739.[31]Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal, 2011, 66(1):94-116.[32]Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 2003, 20(5):735-747.[33]Xu J, Ding Z, Vizcay B G, et al. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis[J]. Plant Cell, 2014, 26(4):1544-1556.[34]Morant M, Jorgensen K, Schaller H, et al. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J]. Plant Cell, 2007, 19(5):1473-1487.[35]Zhao D Z, Wang G F, Speal B, et al. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes and Development, 2002, 16(15):2021-2031.[36]Istrail S, Davidson E H. Logic functions of the genomic cis-regulatory code[J]. Proceedings of the National Academy of Sciences, 2005, 102(14):4954-4959.[37]Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science, 2005, 10(5):236-242.[38]Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany, 2011, 62(8):2465-2483.[39]Xiong S X, Lu J Y, Lou Y, et al. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana[J]. Plant Journal, 2016, 88(6):936-946.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:国家重点研发计划(2016YFD0101500,2016YFD0101504);中央高校基本科研业务费专项资金(KYT201801);长江学者和创新团队发展计划(PCSIRT_17R55)。第一作者简介:金玲(1993-),女,硕士,主要从事大豆分子遗传育种研究。E-mail:msjinling@163.com。通讯作者:杨守萍(1967-),女,博士,教授,主要从事大豆遗传育种研究。E-mail: spyung@126.com。