ZHENG Yu-hong,MA Ling-ling,QIU Hong-mei,et al.Preliminary Analysis of Polyamine Composition Content in Soybean Germplasm of the Northeast China[J].Soybean Science,2019,38(06):856-861.[doi:10.11861/j.issn.1000-9841.2019.06.0856]
东北大豆种质不同多胺组分含量分析
- Title:
- Preliminary Analysis of Polyamine Composition Content in Soybean Germplasm of the Northeast China
- Keywords:
- Soybean; Germplasm; Spermidine; Polyamines; Phenotypic identification; Cluster analysis
- 摘要:
- 为分析东北大豆种质资源的多胺含量及不同多胺组分之间的相关性,采用《国家标准-食品中生物胺含量的测定方法》(GB 5009.208-2008),对不同熟期的包括栽培、野生和半野生类型的78份东北大豆种质的4种多胺成分亚精胺、精胺、腐胺和尸胺组分含量进行测定,通过遗传多样性、相关性、因子与聚类分析,对大豆种质多胺组分含量进行表型鉴定及分析。结果表明:78份大豆种质的4种多胺组分含量存在较丰富的遗传变异,腐胺、亚精胺与精胺组分的离散程度较高,特异含量种质较多。栽培类型中腐胺、尸胺、亚精胺、精胺含量的遗传多样性指数分别为1.09、1.09、1.32和1.74,表明调控亚精胺和精胺各组分的基因型和遗传变异较丰富。亚精胺含量为0.10~1.06 mg·kg-1,均值为0.53 mg·kg-1,变异系数18.45%,表明大豆品种间亚精胺含量存在较大差异。除野生类型与半野生类型大豆尸胺含量差异显著(P<0.05)外,各种类型大豆种质中多胺组分含量相对较一致,类型间无显著差异(P>0.05)。亚精胺组分含量与精胺组分含量呈极显著正相关,腐胺组分含量与多胺总含量呈极显著正相关,亚精胺和精胺两种成分之间遗传关系比较紧密。主成分分析发现,多胺组分中具有代表性的因子为腐胺、亚精胺和精胺。聚类分析结果将66份栽培类型种质分为3类,类群2、3包含种质数量较少,其中大部分种质生育期为早熟类型。
- Abstract:
- In order to analyze the polyamine content of soybean germplasm resources in the Northeast China and the correlation between different polyamine components, this study adopted the National Standard-Determination of Biogenic Amine Content in Food (GB 5009.208-2008) to determine four polyamine components of 78 soybean germplasms in different maturity stages, including cultivated, wild and semi-wild types. The contents of amines, spermine, putrescine and cadaverine were determined. Phenotypic identification and preliminary analysis of polyamines in soybean germplasm were carried out by genetic diversity, correlation, factor and cluster analysis. The results showed that there were abundant genetic variations in the contents of four polyamines in 78 soybean germplasms. The dispersions of putrescine, spermidine and spermine components were higher, and there were more specific contents in 78 soybean germplasms. The genetic diversity indices of putrescine, cadaveric amine, spermidine and spermine contents in cultivation types were 1.09, 1.09, 1.32 and 1.74, respectively, indicating that there were abundant genotypes and genetic variations regulating spermidine and spermine components. Spermidine content ranged from 0.1 to 1.06 mg·kg-1, with a mean value of 0.53 mg·kg-1 and a coefficient of variation of 18.45%. This indicated that there were significant differences in spermidine content among soybean varieties. The content of polyamines in all types of soybean germplasms was relatively the same, but there was no significant difference between the wild and semi-wild soybean germplasms except that the content of cadaverine in wild and semi-wild soybean germplasms was significantly different(P<0.05). The content of spermidine was positively correlated with that of spermine, the content of putrescine was positively correlated with that of polyamines, and the genetic relationship between spermidine and spermine was close. Principal component analysis showed that putrescine, spermidine and spermine were the representative factors in polyamines. Cluster analysis showed that 66 cultivar germplasms were divided into three groups. Group 2 and 3 contained fewer germplasms, and most of them were early maturity type.
参考文献/References:
[1]Hymowitz T. On the domestication of the soybean[J].Economic Botany, 1970,24:408-421.[2]江连洲. 大豆加工利用现状及发展趋势[J].食品与机械,2000(1):7-10.(Jiang L Z.Current situation and development trend of soybean processing and utilization[J].Food and Machinery,2000(1):7-10.)[3]潘瑞炽. 多胺是植物生长发育的调节物[J].植物生理学报,1985(6):65-70.(Pan R Z. Polyamine is the regulator of plant growth and development[J]. Journal of Plant Physiology, 1985(6):65-70.)[4]赵福庚,刘友良. 高等植物体内特殊形态多胺的代谢及调节[J].植物生理学通讯,2000,36(1):1-5.(Zhao F G,Liu Y L.Metabolism and regulation of uncommon polyamines in high plants[J]. Plant Physiology Communications,2000,36(1):1-5.)[5]Kala〖AKcˇ〗 P . Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013 [J]. Food Chemistry, 2014, 161(11): 27-39.[6]Minois N, Carmonagutierrez D, Madeo F. Polyamines in aging and disease [J]. Aging, 2011, 3(8): 716.[7]Kusano T, Berberich T, Tateda C, et al. Polyamines: Essential factors for growth and survival [J]. Planta, 2008, 228: 367-381.[8]Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity [J]. Nature Cell Biology, 2009, 11(11): 1305-1314.[9]Minois N. Molecular basis of the anti-aging effect of spermidine and other natural polyamines-a mini-review [J]. Gerontology, 2014, 60 (4): 319-326.[10]Soda K,Dobashi Y,Kano Y, et al. Polyamine-rich food decreases age-associated pathology and mortality in aged mice [J]. Experimental Gerontology, 2009, 44 (11) :727-732.[11]Soda K, Kano Y, Sakuragi M, et al. Long-term oral polyamine intake increases blood polyamine concentrations [J]. Journal of Nutritional Science and Vitaminology, 2009, 55(4): 361-366.[12]Larocca T J, Gioscia-Ryan R A,Jr C M H , et al. The autophagy enhancer spermidine reverses arterial aging [J]. Mechanisms of Ageing & Development, 2013, 134 (7-8): 314-320.[13]Sagara T, Fiechter G, Pachner M, et al. Soybean spermidine concentration: Genetic and environmental variation of a potential anti-aging constituent [J]. Journal of Food Composition & Analysis, 2017, 56: 11-17.[14]中国国家标准化管理委员会.食品中生物胺含量的测定方法:GB 5009.208-2008[S].北京:国家卫生部,2008. (National Standardization Administration.Determination of biogenic amine in foods:GB 5009.208-2008[S].Beijing:Ministry of Health,2008.)[15]胡建斌,马双武,简在海,等.中国甜瓜种质资源形态性状遗传多样性分析[J].植物遗传资源学报,2013,14(4): 612-619.(Hu J B,Ma S W,Jian Z H,et al.Analysis of genetic diversity of Chinese melon (Cucumis melo L.) germplasm resources based on morphological characters[J].Journal of Plant Genetic Resources,2013,14(4): 612-619.)[16]赵威军,张福耀,常玉卉,等.甜高粱品系的抗倒伏性评价及相关分析[J].植物遗传资源学报,2013,14(1):58-64.(Zhao W J,Zhang F Y,Chang Y H,et al.Evaluation and correlation analysis of lodging resistance on sweet sorghum lines[J].Journal of Plant Genetic Resources,2013,14(1):58-64.)[17]Draisci R, Volpe G, Lucentini L, et al. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies [J]. Food Chemistry, 1998, 62(2): 225-232.[18]Koski P, Helander I M, Sarvas M. Analysis of polyamines as their dabsyl derivatives by reversed-phase high-performance liquid chromatography [J]. Analytical Biochemistry, 1987, 164(1): 261-266.+1[19]Fiechter G, Sivec G, Mayer H K. Application of UHPLC for the simultaneous analysis of free amino acids and biogenic amines in ripened acid-curd cheeses [J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2013, 927(5): 191-200.[20]杜维广,盖钧镒.大豆超高产育种研究进展的讨论[J].土壤与作物,2014,3(3):81-92.(Du W G,Gai J Y.A discussion on advances in breeding for super high-yielding soybean cultivars[J].Soil and Crop,2014,3(3):81-92.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]张春宝,邱红梅,赵洪锟,等.东北地区大豆种质遗传多样性的SRAP标记分析[J].大豆科学,2014,33(01):17.[doi:10.11861/j.issn.1000-9841.2014.01.0017]
ZHANG Chunbao,QIU Hongmei,ZHAO Hongkun,et al.Genetic Diversity Analysis of Soybean Germplasm in Northeast Region of China by SRAP Markers[J].Soybean Science,2014,33(06):17.[doi:10.11861/j.issn.1000-9841.2014.01.0017]
[12]郭蓓邱丽娟邵桂花许占友.大豆耐盐性种质的分子标记辅助鉴定及其利用研究[J].大豆科学,2002,21(01):56.[doi:10.11861/j.issn.1000-9841.2002.01.0056]
Guo BeiQiu LijuanShao GuihuaXu Zhanyou.MARKERS-ASSISTED IDENTIFICATION OF THE SALT TOLERANTACCESSIONS IN SOYBEAN[J].Soybean Science,2002,21(06):56.[doi:10.11861/j.issn.1000-9841.2002.01.0056]
[13]栾晓燕 满为群 杜维广 陈怡 刘鑫磊.大豆光钝感种质创新与光周期育种途径的研究[J].大豆科学,2004,23(03):196.[doi:10.11861/j.issn.1000-9841.2004.03.0196]
Luan Xiaoyan Man Weiqun Du Weiguang Chen Yi Liu Xinlei.STUDIES ON PHOTOPERIODICAL BREEDING METHOD OF SOYBEAN ANDDEVELOPMENTOF PHOTOERIODICAL INSENSITIVE GERMPLASMS[J].Soybean Science,2004,23(06):196.[doi:10.11861/j.issn.1000-9841.2004.03.0196]
[14]孙晓环,王燕平,宗春美,等.东北大豆种质群体花荚器官脱落的差异及其与主要农艺性状的相关分析[J].大豆科学,2018,37(05):730.[doi:10.11861/j.issn.1000-9841.2018.05.0730]
SUN Xiao-huan,WANG Yan-ping,ZONG Chun-mei,et al.Difference of Flower and Pod Organ Abscission and Its Correlation Analysis Between Main Agronomic Characters in Soybean in Northeast of China[J].Soybean Science,2018,37(06):730.[doi:10.11861/j.issn.1000-9841.2018.05.0730]
备注/Memo
基金项目:现代农业产业技术体系建设专项(CARS-04-PS11)。第一作者简介:郑宇宏(1982-),女,硕士,助理研究员,主要从事大豆遗传育种研究。E-mail:zhengyuhong520@163.com。通讯作者:王曙明(1963-),男,博士,研究员,主要从事大豆遗传育种研究。E-mail:shumingw@263.net。