[1]陈磊,邵志伟,高兴,等.大豆固氮相关的硫酸盐转运基因进化分析[J].大豆科学,2018,37(05):697-703.[doi:10.11861/j.issn.1000-9841.2018.05.0697]
 CHEN Lei,SHAO Zhi-wei,GAO Xing,et al.Evolutionary Analysis on Nitrogen Fixation Related Sulfate Transporter Genes in Soybean[J].Soybean Science,2018,37(05):697-703.[doi:10.11861/j.issn.1000-9841.2018.05.0697]
点击复制

大豆固氮相关的硫酸盐转运基因进化分析

参考文献/References:

[1]Takahashi H, Kopriva S, Giordano M, et al.Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62: 157-184.
[2]Rouached H, Berthomieu P, El Kassis E, et al.Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2[J]. Journal of Biological Chemistry, 2005, 280(16): 15976-15983.
[3]Sharma A K, Rigby A C, Alper S L.STAS domain structure and function[J]. Cell Physiol Biochemical, 2011, 28(3): 407-422.
[4]Takahashi H, Buchner P, Yoshimoto N, et al. Evolutionary relationships and functional diversity of plant sulfate transporters[J]. Frontiers in Plant Science, 2012, 2: 119.
[5]Kouchi H, Hata S.Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development[J]. Molecular Genetics and Genomics, 1993, 238(1-2): 106-119.
[6]Vincill E D, Szczyglowski K, Roberts D M.GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate[J]. Plant Physiology, 2005, 137: 1435-1444.
[7]Krusell L, Krause K, Ott T,et al. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules[J]. The Plant Cell, 2005, 17(5): 1625-1636.
[8]Libault M, Farmer A, Brechenmacher L, et al. Complete transcriptome of the soybean root hair cell, a ingle-cell model, and its alteration in response to Bradyrhizobium japonicum infection[J]. Plant Physiology, 2010, 152(2): 541-552.
[9]Clarke V C, Loughlin P C, Gavrin A, et al. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins[J]. Molecular & Cellular Proteomics, 2015, 14(5): 1301-1322.
[10]Yoshimoto N, Takahashi H, Smith F W, et al.Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots[J]. The Plant Journal, 2002, 29(4): 465-473.
[11]Takahashi H, Watanabe-Takahashi A, Smith F W, et al.The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. The Plant Journal, 2000, 23(2): 171-182.
[12]Cao M J, Wang Z, Wirtz M, et al.SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana[J]. The Plant Journal, 2013, 73(4): 607-616.
[13]Kataoka T, Hayashi N, Yamaya T, et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature[J]. Plant Physiology, 2004, 136(4): 4198-4204.
[14]Zuber H, Davidian J C, Aubert G, et al. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds[J]. Plant Physiology, 2010, 154(2): 913-926.
[15]Kataoka T, Watanabe-Takahashi A, Hayashi N, et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis[J]. The Plant Cell, 2004, 16(10): 2693-2704.
[16]Zhang J.Evolution by gene duplication: An update[J]. Trends in Ecology & Evolution, 2003, 18(6): 292-298.
[17]Panchy N, Lehti-Shiu M, Shiu S H.Evolution of gene duplication in plants[J]. Plant Physiology, 2016, 171(4): 2294-2316.
[18]Gu X.Statistical methods for testing functional divergence after gene duplication[J]. Molecular Biology and Evolution, 1999, 16(12): 1664-1674.
[19]Kondrashov F A, Rogozin I B, Wolf Y I, et al.Selection in the evolution of gene duplications[J]. Genome Biology, 2002, 3(2): RESEARCH0008.
[20]Xu G X,Guo C C, Shan H Y, et al. Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1187-1192.
[21]Goodstein D M, Shu S, Howson R,et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(Database issue): D1178-D1186.
[22]Finn R D, Clements J, Arndt W, et al.HMMER web server: 2015 update[J]. Nucleic Acids Research, 2015, 43(W1): W30-W38.
[23]Letunic I, Doerks T, Bork P.SMART: Recent updates, new developments and status in 2015[J]. Nucleic Acids Research, 2015, 43(Database issue): D257-D260.
[24]Edgar R C.MUSCLE: Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[25]Suyama M, Torrents D, Bork P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments[J]. Nucleic Acids Research, 2006, 34(Web Server issue): W609-W612.
[26]Kumar S, Stecher G, Tamura K.MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[27]Guindon S, Dufayard J F, Lefort V, et al.New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307-321.
[28]Stoltzfus A, Logsdon J M, Palmer J D, et al.Intron ‘sliding’ and the diversity of intron positions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(20): 10739-10744.
[29]Rogozin I B, Sverdlov A V, Babenko V N, et al.Analysis of evolution of exon-intron structure of eukaryotic genes[J]. Briefings in Bioinformatics, 2005, 6(2): 118-134.
[30]Hu B, Jin J, Guo A Y, et al.GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[31]Wang D, Zhang Y, Zhang Z, et al.KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies[J]. Genomics, Proteomics & Bioinformatics, 2010, 8(1): 77-80.
[32]Wang D P, Wan H L, Zhang S, et al.Gamma-MYN: A new algorithm for estimating Ka and Ks with consideration of variable substitution rates[J]. Biology Direct, 2009, 4: 20.
[33]Ding Y, Zhou X, Zuo L, et al.Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean[J]. BMC Genomics, 2016, 17: 373.
[34]Lin H, Zhu W, Silva J C, et al.Intron gain and loss in segmentally duplicated genes in rice[J]. Genome Biology, 2006, 7(5): R41.
[35]Gilbert W:The exon theory of genes[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52: 901-905.
[36]Roy S W, Gilbert W.Complex early genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(6): 1986-1991.
[37]Takahashi H.Regulation of sulfate transport and assimilation in plants[J]. International Review of Cell and Molecular Biology, 2010, 281: 129-159.
[38]Shoemaker R C, Polzin K, Labate J,et al. Genome duplication in soybean (Glycine subgenus soja)[J]. Genetics, 1996, 144(1): 329-338.
[39]Schmutz J, Cannon S B, Schlueter J,et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
[40]Doyle J J, Luckow M A.The rest of the iceberg. Legume diversity and evolution in a phylogenetic context[J]. Plant Physiology, 2003, 131(3): 900-910.
[41]Severin A J, Woody J L, Bolon Y T,et al. RNA-Seq Atlas of Glycine max:A guide to the soybean transcriptome[J]. BMC Plant Biology, 2010, 10: 160.
[42]Xu G, Guo C, Shan H, et al. Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4):1187-1192.
[43]Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-04-26

基金项目:江苏省自然科学基金面上项目(BK20151269)。
第一作者简介:陈磊(1994-),男,硕士,主要从事植物分子进化研究。E-mail: 16090003@yjs.ntu.edu.cn。
通讯作者:朱新宇(1963-),男,博士,教授,主要从事植物分子进化研究。E-mail: zhuxinyu@ntu.edu.cn。

更新日期/Last Update: 2018-10-08