WEI Si-ming,CHEN Qing-shan,JIANG Hong-wei,et al.TL Mapping for Seed Weight per Plant by using the Wild Soybean Chromosome Segment Substitution Lines[J].Soybean Science,2016,35(05):742-747.[doi:10.11861/j.issn.1000-9841.2016.05.0742]
利用野生大豆染色体片段代换系定位单株粒重QTL
- Title:
- TL Mapping for Seed Weight per Plant by using the Wild Soybean Chromosome Segment Substitution Lines
- 文献标志码:
- A
- 摘要:
- 以野生大豆ZYD00006为供体亲本,黑龙江省主栽品种绥农14为轮回亲本,连续多年回交并自交,构建了高世代染色体片段代换系BC3F3代161个株行。该群体经多代回交的遗传背景相对一致,大大提高了QTL定位的准确度。结合单因素方差分析法和独立样本T检验法对群体进行QTL定位,共获得9个单株粒重的QTL,分布于7个连锁群。两种方法中均被检测到的有3个QTL,分别为QSW-J-1、QSW-J-2和QSW-G-1;QSW-G-1和QSW-G-2与已有研究结果相吻合;其余7个QTL为新发现QTL,可能是本材料特有位点;其中QSW-J-1的导入片段长度是7.0 cM,且加性效应值为-2.7 g,可作为继续研究的首选位点。
- Abstract:
- To study the QTL mapping of seed weight per plant, which is beneficial to increase the yield of soybean. In this study, the BC3F3population is a chromosome segment substitution lines which constituted by 161 lines, with the wild soybean ZYD00006 as donor parent and the cultivar Suinong 14 as recurrent parent, selfing and backcross continuously for several years. The genetic background of this population relatively consistent, which reducing the interference greatly and improving the accuracy of QTL mapping. The QTL mapping was combined by ANOVA Method and T-test for independent samples. A total of 9 QTLs underlying seed weight per plant were detected which distributed on 7 linkage groups.Three QTLs were detected by both methods, including .QSW-J-1, QSW-J-2, QSW-G-1-2 QTL were in accord with known results. Another 7 ones were the new discovery QTL, which should be specific loci in our materias. The fragment length of QSW-J-1 was 7.0 cM, and the additive effects of it is -2.7 g, which could be used as the first choice loci for further study.
参考文献/References:
[1]Dargahi H,Tanya P, Somta P, et al.Mapping quantitative trait loci for yield-related traits in soybean (Glycine max L)[J]Breeding Science, 2014,64: 282-290.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]靳路真,王洋,张伟,等.高温胁迫对不同耐性大豆品种生理生化的影响[J].大豆科学,2019,38(01):63.[doi:10.11861/j.issn.1000-9841.2019.01.0063]
JIN Lu-zhen,WANG Yang,ZHANG Wei,et al.Effects of High Temperature Stress on Physiological and Biochemical Traits of Soybeans with Different Heat Tolerance[J].Soybean Science,2019,38(05):63.[doi:10.11861/j.issn.1000-9841.2019.01.0063]
备注/Memo
基金项目:教育部新世纪优秀人才支持计划(NECT-1207-01);国家青年科学基金项目(31401465);黑龙江省自然科学基金重点项目(ZD201213);国家现代农业产业技术体系(CARS-04-02A);黑龙江省博士后基金(LBH-Z12035);中国博士后基金(2012M520030);黑龙江省高校长江后备支持计划项目(2014CJHB004)。第一作者简介:魏思明(1991-),女,硕士,主要从事作物遗传育种研究。E-mail:391294927@qq.com。通讯作者:武小霞(1971-),女,研究员,博导,主要从事大豆生物技术研究。E-mail:Xxwu2012@163.com;潘校成(1973.),男,博士,教授,主要从事大豆遗传育种与生物技术研究。E-mail: soybean2007@126.com