KUANG En-jun.Decomposition Characteristics of Soybean stalk under Different Stalk Returning Method[J].Soybean Science,2010,29(03):479-482.[doi:10.11861/j.issn.1000-9841.2010.03.0479]
不同还田方式下大豆秸秆腐解特征研究
- Title:
- Decomposition Characteristics of Soybean stalk under Different Stalk Returning Method
- 文章编号:
- 1000-9841(2010)03-0479-04
- Keywords:
- Soybean; Stalk returning; Decomposition regularity
- 分类号:
- S141.4
- 文献标志码:
- A
- 摘要:
- 利用网袋法模拟秸秆还田方式,研究不同还田方式不同阶段大豆秸秆有机碳、氮、磷、钾养分释放特征。结果表明:经过150 d的分解,大豆秸秆生物量有39.2%~55.9%被分解,埋于土壤的大豆秸秆分解速度明显高于露天处理。腐解后大豆秸秆从组织结构上变得松散。露天与土埋处理秸秆有机碳分解率均随着时间的延长而增加,150 d时大豆秸秆分解了40.7%~59.2%,加入腐熟剂效果不明显。经150 d腐解后,大豆秸秆的氮、磷、钾养分释放率分别为60.1%~65.4%、18.3%~39.4%和74.6%~86.4%。
- Abstract:
- Net bag method was used to determine nutrition decomposing characteristics of organic carbon, N, P, and K of soybean stalks under two different crop stalk returning approaches. The results showed that after 150 days, decomposition rate of soybean stalks were between 39.2%~55.9%. The trend of stalk decomposition of soil coverage treatment was higher than open-air treatment. Tissue of soybean stalk became loose after decomposing. Organic carbon decomposition rate of straw was increased with time under open-air and soil coverage treatments. The soybean straw decomposition rate was 40.7%~59.2% after 150 days. Adding decomposition accelerator had not improved the speed of organic C decomposing. The decomposition rate of N, P and K were 60.1%~65.4%, 15.4%~39.4%, 74.6%~86.4%, respectively.
参考文献/References:
[1]刘世平, 陈文林, 聂新涛, 等. 麦稻两熟地区不同埋深对还田秸秆腐解进程的影响[J]. 植物营养与肥料学报, 2007, 13(6):1049-1053.(Liu S P, Chen W L, Nie X T, et al. Effect of embedding depth on decomposition course of crop residues in rice-wheat system[J]. Plant Nutrition and Fertilizer Science, 2007,13(6):1049-1053.) [2]李庆康, 王振中, 顾志权, 等. 秸秆腐熟剂在秸秆还田中的效果研究初报[J]. 土壤与环境, 2001, 30(2): 9-15.(Li Q K, Wang Z D, Gu Z Q, et al. Effect of straw return to soil by effective microorganisms on rice and wheat growth and their straw decay[J].Soil and Environmental Sciences, 2001, 30(2): 9-15.) [3]张电学, 韩志卿, 刘微, 等. 不同促腐条件下秸秆直接还田对土壤养分时空动态变化的影响[J]. 土壤通报, 2005, 36(3): 360-364.(Zhang D X, Han Z Q, Liu W, et al. Effect of application of maize straw with transformation promoter Ⅲ.On soil organic matter and nutrients and biological activities[J].Chinese Journal of Soil Science, 2005, 36(3): 360-364.) [4]李新举, 张志国, 李贻学, 等. 土壤深度对还田秸秆腐解速度的影响[J]. 土壤学报, 2001, 38(1): 135-138. (Li X J, Zhang Z G, Li Y X. Effects of soil depth on decay speed of straw[J]. Acta Pedologica Sinica, 2001, 38(1): 135-138.) [5]王允青, 郭熙盛. 不同还田方式作物秸秆腐解特征研究[J]. 中国生态农业学报,2008,16(3): 607-610.(Wang Y Q, Guo X S. Decomposition characteristics of crop-stalk under different incorporation methods[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 607-610.) [6]李逢雨, 孙锡发, 冯文强, 等. 麦秆、油菜秆还田腐解速率及养分释放规律研究[J]. 植物营养与肥料学报, 2009, 15(2):374-380.(Li F Y, Sun X F, Feng W Q, et al. Nutrient release patterns and decomposing rates of wheat and rapeseed straw[J]. Plant Nutrition and Fertilizer Science, 2009,15(2):374-380.) [7]史奕, 张璐, 鲁彩艳, 等. 不同有机物料在潮棕壤中有机碳的分解进程[J]. 生态环境, 2003, 12(1): 56-58.(Shi Y, Zhang L, Lu C Y, et al. Decomposition process of organic carbon of different organic materials in meadow brown soil[J]. Ecology and Environment, 2003, 12(1): 56-58.) [8]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999.(Lu R K. Analytic technique of soil agricultural chemistry[M]. Beijing: China Agriculture Science and Technique Press, 1999.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]郭 昕,宋秋来,曾祥亮,等.种植大豆对土壤磷、钾平衡的影响[J].大豆科学,2012,31(06):907.[doi:10.3969/j.issn.1000-9841.2012.06.010]
GUO Xin,SONG Qiu-lai,ZENG Xiang-liang,et al.Effects of Planting Soybean on the Balances of Soil Phosphorus and Potassium[J].Soybean Science,2012,31(03):907.[doi:10.3969/j.issn.1000-9841.2012.06.010]
[12]张铭,王岩,赵天宏,等.臭氧浓度升高条件下秸秆还田对大豆光合荧光特性及产量的影响[J].大豆科学,2019,38(05):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
ZHANG Ming,WANG Yan,ZHAO Tian-hong,et al.Effects of Straw Returning on Photosynthetic Fluorescence Characteristics and Yield of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2019,38(03):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
备注/Memo
基金项目:国家科技支撑计划资助项目(2007BAD89B05,2006BAD05B05)。