Luo Qingyun Liu Youliang Zhang Yuanming Xue Yanling Zhang Yan.INHERITANCEOF Cl-TOLERANCEOF GLYCINE MAX CULTIVARS IN SEEDLINGS[J].Soybean Science,2006,25(04):390-394.[doi:10.11861/j.issn.1000-9841.2006.04.0390]
苗期栽培大豆 Cl- 耐性的遗传分析*
- Title:
- INHERITANCEOF Cl-TOLERANCEOF GLYCINE MAX CULTIVARS IN SEEDLINGS
- 关键词:
- 栽培大豆; Cl- 耐性 ; 遗传 ; 主基因 +多基因遗传模型; 多世代联合分离分析
- Keywords:
- Soybean cultivars; Cl-tolerance; Inheritance; Mixed major gene and polygene inheritancemodel ; Joint segregation analysis of multiple generations
- 文献标志码:
- A
- 摘要:
- NaCl 胁迫下栽培大豆所受的离子胁迫作用主要是由 Cl- 毒害所引起的, 可以通过改良栽培大豆的 Cl- 敏感性来提高栽培大豆的耐盐性。本研究对栽培大豆品种南农 1138-2、南农 88-31 和Jackson 间配制的2 个杂交组合的P 1 、P 2 、F 1 、F 2 和 F 2∶3 世代的 Cl- 耐性进行了调查 ,并利用主基因+多基因混合遗传模型联合分离分析方法分析栽培大豆的 Cl- 耐性遗传规律。结果表明 ,南农 88-31×Jackson 和南农 1138-2 ×南农 88-31 的 Cl- 耐性遗传都符合 D-0 模型, 即上述两组合的 Cl - 耐性都受 1对加性-显性主基因控制, 同时也受加性-显性-上位性多基因控制。南农 88-31×Jackson组合的主基因和多基因加性效应都高于南农 1138-2×南农 88-31 组合。但是, 其主基因和多基因显性效应远低于南农 1138-2 ×南农 88-31 组合。从 F 2∶3 估计的主基因遗传力分别为 0.54%和18.23%,估计的微效基因遗传力分别为 83 .56%和 16.32%。表明 ,可以利用 Cl- 耐性强的大豆亲本配制杂交组合 ,并且在育种的早期阶段选育 Cl- 耐性强的单株或家系 ,以获得耐盐性高的栽培大豆品种。
- Abstract:
- Stress of NaCl on seedlings of soybean cultivars was mainly coursed by Cl-, and we oulel im-prove salt tolerance of soybean cultivars by amelioration of the Cl-sensitive of cultivars.Inheritance ofCl - tolerance in P 1 、P 2 、F 1 、F 2 and F 2∶3 from two crosses of Nannong 88-31×Jackson and Nannong 1138-2×Nannong 88-31 were investigated by the mixed major gene plus poly-gene inheritance model of quantita-tive traits.The joint analyses results showed that the Cl-tolerance of this two crosses were both con-trolled by a major gene and minor genes (the D-0 model).And the values of additive effect of the majorgene and the minor genes of Nannong 88-31×Jackson were higher than those of Nannong 1138-2 ×Nan-nong 88-31, but the values of dominance effects of the major gene and the minor ones of Nannong 88-31×Jackson were lower than those of the latter crosse .In F 2∶3 from cross of Nannong 88-31 × Jackson andNannong 1138-2 ×Nannong 88-31, the heritability values of the major gene were estimated as 0 .54%and18.23%, respectively .And those of the minor genes were estimated as 83.56 %and 16.32%, respective-ly .Thus, it was possible for us to breed Cl-tolerant soybean cultivars by choosing Cl-tolerant parentsand handling segregating generation.
参考文献/References:
1 刘友良, 汪良驹.植物对盐胁迫的反应和耐盐性[ A] .见:余叔文, 汤章城, 主编.植物生理与分子生物学(第二版)[ C] .北京:科学出版社, 1998.752-769.
相似文献/References:
[1]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[2]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(04):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[3]郑世英,郑建峰,张秀玲,等.NaCl胁迫对野生及栽培大豆渗透调节物质含量的影响[J].大豆科学,2011,30(05):786.[doi:10.11861/j.issn.1000-9841.2011.05.0786]
ZHENG Shi-ying,ZHENG Jian-feng,ZHANG Xiu-ling,et al.Effect of NaCl Stress on the Content of Osmotic Regulation Substances in Glycine soja and Glycine max[J].Soybean Science,2011,30(04):786.[doi:10.11861/j.issn.1000-9841.2011.05.0786]
[4]马光,郭继平,魏淑珍,等.干旱胁迫下野生大豆和栽培大豆生理特性比较[J].大豆科学,2011,30(06):1057.[doi:10.11861/j.issn.1000-9841.2011.06.1057]
MA Guang,GUO Ji-ping,WEI Shu-zhen,et al.Comparison on Physiological Characteristics of Glycine soja and Glycine max under Drought Stress[J].Soybean Science,2011,30(04):1057.[doi:10.11861/j.issn.1000-9841.2011.06.1057]
[5]李发院,田 芳,张晓可,等.栽培大豆和野生大豆及其回交后代苗期耐盐性分析[J].大豆科学,2012,31(04):593.[doi:10.3969/j.issn.1000-9841.2012.04.016]
LI Fa-yuan,TIAN Fang,ZHANG Xiao-ke,et al.Analysis of Seedlings Salt Tolerance of Backcross Hybrids of Glycine maxand Glycine soja[J].Soybean Science,2012,31(04):593.[doi:10.3969/j.issn.1000-9841.2012.04.016]
[6]纪展波,蒲伟凤,李桂兰,等.野生大豆、半野生大豆和栽培大豆对苗期干旱胁迫的生理反应[J].大豆科学,2012,31(04):598.[doi:10.3969/j.issn.1000-9841.2012.04.017]
JI Zhan-bo,PU Wei-feng,LI Gui-lan,et al.Physiological Reaction of Glycine soja,Glycine gracilisand Glycine max to Drought Stress in Seedling Stage[J].Soybean Science,2012,31(04):598.[doi:10.3969/j.issn.1000-9841.2012.04.017]
[7]高小宽,刘国杰,白丽荣.聚乙二醇(PEG)模拟干旱胁迫对野生大豆与栽培大豆萌发的影响[J].大豆科学,2012,31(06):1027.[doi:10.3969/j.issn.1000-9841.2012.06.037]
GAO Xiao-kuan,LIU Guo-jie,BAI Li-rong.Effect of Polyethylene Glycol(PEG)Simulated Drought Stress on Seed Germination of Wild and Cultivated Soybeans[J].Soybean Science,2012,31(04):1027.[doi:10.3969/j.issn.1000-9841.2012.06.037]
[8]吴伟,等.栽培大豆端粒相关序列的克隆及定位[J].大豆科学,2010,29(03):380.[doi:10.11861/j.issn.1000-9841.2010.03.0380]
WU Wei,LI Hong-jie,et al.Cloning and Mapping of Telomere Associated Sequence in Soybean[J].Soybean Science,2010,29(04):380.[doi:10.11861/j.issn.1000-9841.2010.03.0380]
[9]王岚.野生与栽培大豆某些性状的比较及其在大豆育种中的利用[J].大豆科学,2010,29(04):575.[doi:10.11861/j.issn.1000-9841.2010.04.0575]
WANG Lan.Comparsion of Several Character between Glycine soja and Glycine max and Its Utilization in Soybean Breeding[J].Soybean Science,2010,29(04):575.[doi:10.11861/j.issn.1000-9841.2010.04.0575]
[10]梁江,陈渊,汤复跃,等.利用18S rRNA基因部分序列研究大豆种质资源的进化关系[J].大豆科学,2010,29(04):586.[doi:10.11861/j.issn.1000-9841.2010.04.0586]
LIANG Jiang,CHEN Yuan,TANG Fu-yue,et al.Reveal the Evolutionary Relationship of Soybean Germplasm by Comparing 18S rRNA Gene Sequences[J].Soybean Science,2010,29(04):586.[doi:10.11861/j.issn.1000-9841.2010.04.0586]
备注/Memo
基金项目:国家自然科学基金(39870069)和农业部植物营养与养分循环重点开放实验室开放基金资助项目