[1]林延慧,徐冉,朱红林,等.大豆耐涝bHLH转录因子筛选及生物信息学分析[J].大豆科学,2021,40(03):319-326.[doi:10.11861/j.issn.1000-9841.2021.03.0319]
 LIN Yan-hui,XU Ran,ZHU Hong-lin,et al.Selection and Bioinformatics Analysis of bHLH Transcription Factor Response to Submergence Stress in Soybean[J].Soybean Science,2021,40(03):319-326.[doi:10.11861/j.issn.1000-9841.2021.03.0319]
点击复制

大豆耐涝bHLH转录因子筛选及生物信息学分析

参考文献/References:

[1]Min S K, Zhang X, Zwiers F W, et al. Human contribution to more-intense precipitation extremes[J]. Nature, 2011, 470(7334): 378-381. [2]Schiermeier Q. Increased flood risk linked to global warming[J]. Nature, 2011, 470 (7334): 316.[3]Bailey-Serres J, Fukao T, Gibbs D J, et al. Making sense of low oxygen sensing[J]. Trends in Plant Science, 2012, 17(3):129.[4]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance [J]. Planta, 2003, 218( 1): 1-14.[5]Zhang X, Luo H M, Xu Z C, et al. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza [J]. Scientific Reports, 2015, 5: 11244.[6]Sun H, Fan H J, Ling H Q. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics, 2015, 16(1): 9.[7]Ledent V, Vervoort M. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis[J]. Genome Research, 2001, 11(5): 754-770.[8]Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749-1770.[9]Sonnenfeld M J, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor [J]. Development Genes and Evolution, 215(5): 221-229.[10]Massari M E, Murre C. Helix-Loop-Helix proteins: Regulators of transcription in eucaryotic organisms [J]. Molecular and Cellular Biology, 20(2): 429-440.[11]Liu W W, Tai H H, Li S S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. New Phytologist, 2014, 201(4): 1192-1204.[12]Jiang Y, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress [J]. Molecular Genetics and Genomics, 2009, 282(5):503-516.[13]Ji X Y, Nie X G, Liu Y J, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiology, 2016, 36:193-207.[14]Feng H L, Ma N N, Meng X, et al. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2013, 73: 309-320.[15]Li F, Guo S Y, Zhao Y, et al. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis [J]. Plant Cell Reports, 2010, 29(9): 977-986.[16]Seo J S, Joo J, Kim M, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice [J]. Plant Journal for Cell & Molecular Biology, 65(6): 907-921.[17]Zhao P C, Liu P P, Yuan G X, et al. New insights on drought stress response by global investigation of gene expression changes in sheepgrass (Leymus chinensis) [J]. Frontiers in Plant Science, 2016, 7: 954.[18]Wang F B, Zhu H, Chen D H, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana [J]. Plant Cell Tissue and Organ Culture, 125(2): 387-398.[19]Du M, Zhao J, Tzeng D, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulate jasmonate-mediated plant immunity in tomato [J]. The Plant Cell, 2017, 29:1883-1906.[20]Mallappa C, Yadav V, Negi P, et al. A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis [J]. Journal of Biological Chemistry, 2006, 281(31): 22190-22199.[21]Kazan K, Manners J M. MYC2: The master in action [J]. Molecular Plant, 2013, 6(3): 686-703.[22]Gangappa S N, Maurya J P, Yadav V, et al. The regulation of the Z- and G-Box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis [J]. PLoS One, 2013, 8(4):e62194.[23]Verma D, Jalmi S K, Bhagat P K, et al. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis [J]. The FEBS Journal, 2020, 287(12):2560-2576.[24]李新鹏, 童依平. 植物吸收转运无机氮的生理及分子机制[J]. 植物学报, 2007, 24(6):714-725. (Li X P, Dong Y P. Physiological and molecular basis of inorganic nitrogen transport in plants[J]. Chinese Bulletin of Botany, 2007, 24 (6): 714-725.)[25]Bloom A J, Sukrapanna S S, Warner R L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley [J]. Plant Physiology, 1992, 99(4): 1294-1301.[26]Yoshida S. Fundamentals of rice crop science [M]. Philippines: International Rice Research Institute, 1981.[27]Kaiser B N, Rawat S R, Siddiqi M Y, et al. Functional analysis of an Arabidopsis T-DNA “knockout” of the high-affinity NH4(+) transporter AtAMT1;1[J]. Plant Physiology, 2002, 130(3): 1263-1275.[28]Sohlenkamp C, Wood C C, Roeb G W, et al. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiology, 2002, 130(4): 1788-1796.[29]Gazzarrini S, Lejay L, Gojon A, et al. Three functional transporters for constitutive, diurnally regulated, and starvation -induced uptake of ammonium into Arabidopsis roots[J]. Plant Cell, 1999, 11: 937-948.[30]Shelden M C, Dong B, de Bruxelles G L, et al. Arabidopsis ammonium transporter, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles[J]. Plant and Soil, 2001, 231(1): 151-160.[31]Neuhauser B, Dynowski M, Mayer M, et al. Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails[J]. Plant Physiololy, 2007, 143: 1651-1659.[32]Yuan L, Loque D, Kojima S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell, 2007, 19: 2636-2652.[33]Loqué D, Ludewig U, Yuan L X, et al. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole[J]. Plant Physiology, 2005, 137(2): 671-680.[34]Sonoda Y, Ikeda A, Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice[J]. Plant Cell Physiology, 2003, 44: 726-734. [35]Suenaga A, Moriya K, Sonoda Y, et al. Constitutive expression of a novel type ammonium transporter OsAMT2 in rice plants[J]. Plant Cell Physiology, 2003, 44(2): 206-211.[36]邓若磊, 谷俊涛, 路文静, 等. 水稻铵转运蛋白基因OsAMT1;4和OsAMT5的特征分析、功能和表达[J]. 中国农业科学, 2007, 40(11):2395-2402. (Deng R L, Gu J T, Lu W J, et al. Characterization, function and expression analysis of ammonium transporter gene OsAMT1;4 and OsAMT5 in rice (Oryza sativa)[J]. Scientia Agricultura Sinica, 2007, 40 (11):2395-2402.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]孙艳辉,李啟萌,张利新,等.大豆耐涝性研究进展[J].大豆科学,2023,42(03):367.[doi:10.11861/j.issn.1000-9841.2023.03.0367]

备注/Memo

收稿日期:2020-12-21

基金项目:2020年海南省省属科研院所技术创新专项(jscx202004);2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC357)。
第一作者:林延慧(1984—),博士,助理研究员,主要从事大豆分子育种研究。E-mail:lyh_1012@163.com。
通讯作者:徐靖(1981—),硕士,副研究员,主要从事旱粮分子育种研究。E-mail:jing_jing_xu@163.com。

更新日期/Last Update: 2021-07-20