[1]李清,王洪,郭禄芹,等.大豆Whirly基因家族的鉴定和表达分析[J].大豆科学,2019,38(02):204-211.[doi:10.11861/j.issn.1000-9841.2019.02.0204]
 LI Qing,WANG Hong,GUO Lu-qin,et al.Identification and Expression Analysis of the Whirly Gene Family in Soybean[J].Soybean Science,2019,38(02):204-211.[doi:10.11861/j.issn.1000-9841.2019.02.0204]
点击复制

大豆Whirly基因家族的鉴定和表达分析

参考文献/References:

[1]Desveaux D, Marechal A, Brisson N. Whirly transcription factors: Defense gene regulation and beyond[J]. Trends in Plant Science, 2005, 10(2): 95-102.

[2]孔凡英, 邓永胜, 周斌, 等. Whirly转录因子研究进展[J]. 植物生理学报, 2012, 48(7): 643-653. (Kong F Y, Deng Y S, Zhou B, et al. Research advancement of Whirly transcription factors[J]. Plant Physiology Journal, 2012, 48(7): 643-653.)
[3]Desveaux D, Despres C, Joyeux A, et al. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato[J]. Plant Cell, 2000, 12(8): 1477-1489.
[4]Krause K, Kilbienski I, Mulisch M, et al. DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles[J]. FEBS Letters, 2005, 579(17): 3707-3712.
[5]姚沁涛, 张文蔚, 刘莉, 等. Whirly转录因子对非寄主菌诱导水稻HR反应的负调控作用[J]. 中国农业科技导报, 2008, 10(5): 53-58. (Yao Q T, Zhang W W, Liu L, et al. Negative regulation of rice Whirly transcription Factor for the hypersensitive response induced by non-host pathogen bacterium[J]. Journal of Agricultural Science and Technology, 2008, 10(5): 53-58. )
[6]Prikryl J, Watkins K P, Friso G, et al. A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis[J]. Nucleic Acids Research, 2008, 36(16): 5152-5165.
[7]Zhang Y F, Hou M M, Tan B C. The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize[J]. Plos One, 2013, 8(6): e67369.
[8]Grabowski E, Miao Y, Mulisch M, et al. Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell[J]. Plant Physiology, 2008, 147(4): 1800-1804.
[9]Zhao S Y, Wang G D, Zhao W Y, et al. Overexpression of tomato WHIRLY protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco[J]. Biologia Plantarum, 2018, 62(1): 55-68.
[10]Yoo H H, Kwon C, Lee M M, et al. Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis[J]. Plant Journal, 2007, 49(3): 442-451.
[11]Ren Y, Li Y, Jiang Y, et al. Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis[J]. Molecular Plant, 2017, 10(5): 749-763.
[12]Cai Q, Guo L, Shen Z R, et al. Elevation of pollen mitochondrial DNA copy number by WHIRLY2: Altered respiration and pollen tube growth in Arabidopsis[J]. Plant Physiology, 2015, 169(1): 660-673.
[13]Dickey T H, Altschuler S E, Wuttke D S. Single-stranded DNA-binding proteins: Multiple domains for multiple functions[J]. Structure, 2013, 21(7): 1074-1084.
[14]Desveaux D, Subramaniam R, Despres C,et al. A ‘whirly’ transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis[J]. Developmental Cell, 2004, 6(2): 229-240.
[15]Krupinska K, Dahnhardt D, Fischer-Kilbienski I, et al. Identification of WHIRLY1 as a factor binding to the promoter of the stress- and senescence-associated gene HvS40[J]. Journal of Plant Growth Regulation, 2014, 33(1): 91-105.
[16]Xiong J Y, Lai C X, Qu Z, et al. Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression[J]. Plant Molecular Biology, 2009, 71(4-5): 437-449.
[17]Miao Y, Jiang J, Ren Y, et al. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis[J]. Plant Physiology, 2013, 163(2): 746-756.
[18]Marechal A, Parent J S, Veronneau-Lafortune F, et al. Whirly proteins maintain plastid genome stability in Arabidopsis[J].PNAS, 2009, 106(34): 14693-14698.
[19]Marechal A, Parent J S, Sabar M, et al. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function[J]. BMC Plant Biology, 2008, 8(1): 1-15.
[20]Cappadocia L, Marechal A, Parent J S, et al. Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair[J]. Plant Cell, 2010, 22(6): 1849-1867.
[21]Janack B, Sosoi P, Krupinska K, et al. Knockdown of WHIRLY1 affects drought stress-induced leaf senescence and histone modifications of the senescence-associated gene HvS40[J]. Plants, 2016, 5(3): 37.
[22]黄晨星, 任育军, 李燕云, 等. 拟南芥WHIRLY2基因超表达引起拟南芥角果发育异常的分子细胞学分析[J]. 福建农林大学学报(自然科学版), 2016, 45(3): 277-281. (Huang C X, Ren Y J, Li Y Y, et al. Molecular and cytology analysis of Arabidopsis silique abnormal development induced by WHIRLY2 overexpression[J]. Journal of Fujian Agricultural and Forestry University (Nature Science Edition), 2016, 45(3): 277-281. )
[23]Isemer R, Krause K, Grabe N, et al. Plastid located WHIRLY1 enhances the responsiveness of Arabidopsis seedlings toward abscisic acid[J]. Frontiers in Plant Science, 2012, 3(4): 283.
[24]Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database: Towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(Database issue): D279-D285.
[25]Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[26]Hu B, Jin J, Guo A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296.
[27]Bailey T L, Boden M, Buske F A, et al. MEME SUITE: Tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Web server issue): 202-208.
[28]Emanuelsson O, Brunak S, Von Heijne G, et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nature Protocols, 2007, 2(4): 953-971.
[29]Kelley L A, Mezulis S, Yates C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6): 845-858.
[30]Belamkar V, Weeks N T, Bharti A K, et al. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress[J]. BMC Genomics, 2014, 15: 950.
[31]Liu A, Xiao Z, Li M W, et al. Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant Cell & Environment, 2018, 12(12): e0189159.
[32]Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12 (4): 357-360.
[33]Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290-295.
[34]Deng W, Wang Y, Liu Z, et al. HemI: A toolkit for illustrating heatmaps[J]. PLoS One, 2014, 9(11): e111988.
[35]Xu G X, Guo C C, Shan H Y, et al. Divergence of duplicate genes in exon-intron structure[J]. PNAS,2012, 109(4): 1187-1192.
[36]Desveaux D, Allard J, Brisson N, et al. A new family of plant transcription factors displays a novel ssDNA-binding surface[J]. Nature Structural Biology, 2002, 9(7): 512-517.
[37]蔡倩, 任育军, 黄晨星, 等. 植物单链DNA结合蛋白WHIRLY2研究进展[J]. 福建农林大学学报(自然科学版), 2018, 47(3): 267-273. (Cai Q, Ren Y J, Huang C X, et al. Research progress of single-stranded DNA binding protein WHIRLY2 in plants[J]. Journal of Fujian Agricultural and Forestry University (Nature Science Edition), 2018, 47(3): 267-273.)
[38]林文芳, 任育军, 缪颖. 植物Whirly蛋白调控叶片衰老的研究进展[J]. 植物生理学报, 2014, 50(9): 1274-1284. (Lin W F, Ren Y J, Miao Y. Research progress of Whirly proteins in regulation of leaf senescence[J]. Plant Physiology Journal, 2014, 50(9): 1274-1284.)
[39]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
[40]Flagel L E, Wendel J F. Gene duplication and evolutionary novelty in plants[J]. New Phytologist, 2009, 183(3): 557-564.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-11-28

基金项目:中国博士后基金(2017M622751);广东省自然科学基金(2018A030310455);深圳孔雀创新团队基金(KQTD2017032715165926);广东省生物学特色重点学科专项经费。
第一作者简介:李清(1986-),男,博士,助理研究员,主要从事植物分子生物学研究。 E-mail:liqing1986102@163.com。
通讯作者:罗秋兰(1984-),女,博士,副教授,主要从事植物分子生物学研究。E-mail:luoqiulan_79@163.com。

更新日期/Last Update: 2019-04-01