ZHOU Chang-jun,TIAN Zhong-yan,WU Yao-kun,et al.Effects of Planting Density and Nitrogen Topdressing on Agronomic Traits and Yield of Nongqingdou 28[J].Soybean Science,2022,41(06):688-695.[doi:10.11861/j.issn.1000-9841.2022.06.0688]
种植密度与氮肥追施对农庆豆28农艺性状及产量的影响
- Title:
- Effects of Planting Density and Nitrogen Topdressing on Agronomic Traits and Yield of Nongqingdou 28
- Keywords:
- soybean; groups; planting density; nitrogen topdressing; yield
- 文献标志码:
- A
- 摘要:
- 为了探索抗线虫大豆新品种农庆豆28在黑龙江省西部盐碱半干旱地区的最佳种植密度与氮肥追施水平,本研究采用二因素随机区组设计,设置6个氮肥追施处理和4个种植密度处理(22万、25万、28万和31万株·hm-2 ),研究不同种植密度与氮肥追施对其主要农艺性状及产量的影响,探讨该品种最优的肥密配置。结果表明:在氮肥追施水平相同的条件下,株高、底荚高度随着种植密度增大而升高,分枝数、有效节数、单株荚数、单株粒数、单株粒重随着种植密度的增大而降低;在种植密度相同时,单株荚数变化在氮肥追施水平30和120 kg·hm-2时呈现双峰高值,单株粒数和单株粒重在氮肥追施水平120 kg·hm-2时最高,随后下降。产量随着种植密度和氮肥追施水平的提高,呈先升高后降低趋势,且产量最高处理(A4B3)各产量相关构成因素表现并不突出,可见肥密最优配置使群体优势最大发挥。在种植密度28万株·hm-2、氮肥追施120 kg·hm-2时农庆豆28产量最高,达2 830.50 kg·hm-2,其产值较对照(A0B1)处理增加3 792.22元·hm-2。因此在黑龙江省西部盐碱土壤农庆豆28最佳增产增效的肥密配置方式为种植密度28万株·hm-2,以大豆专用复合肥450 kg·hm-2为底肥,追施尿素120 kg·hm-2。
- Abstract:
- In order to explore the best planting density and nitrogen topdressing level of a new soybean cyst nematode resistant cultivar Nongqingdou 28 in the saline alkali semi-arid area of Western Heilongjiang Province, we set up a two factor random block design of six nitrogen topdressing treatments and four planting density treatments (220 thousand, 250 thousand, 280 thousand and 310 thousand plants·ha-1). The effects of different planting density and nitrogen topdressing level on its main agronomic traits and yield, and the optimal group structure of Nongqingdou 28 were studied. The results showed that under the same nitrogen topdressing level, the plant height and bottom pod height increased with the increasing of planting density, while the number of branches, effective nodes, pods per plant and seeds per plant, and seed weight per plant decreased with the increasing of planting density. At the same planting density, the number of pods per plant showed bimodal high value at the nitrogen topdressing level of 30 and 120 kg·ha-1, and the number and weight of seeds per plant were the highest at the nitrogen topdressing level of 120 kg·ha-1, and then decreased. The yield increased firstly and then decreased with the increasing of planting density and nitrogen topdressing level, and the relevant yield components of the highest yield treatment (A4B3) were not prominent. It can be seen that the optimal allocation of fertilizer and density maximized the group advantage. When the planting density was 280 thousand plants·ha-1 and the top application of nitrogen fertilizer was 120 kg·ha-1, the yield of Nongqingdou 28 was the highest, reaching 2 830.50 kg·ha-1, and its output value increased by 3 792.22 yuan·ha-1 compared with the control (A0B1). Therefore, in the saline alkali soil in the west of Heilongjiang Province, the best allocation of fertilizer and density to increase production and efficiency of Nongqingdou 28 is 280 thousand plants·ha-1, 450 kg·ha-1 special compound fertilizer for soybean as base fertilizer, and topdressing urea 120 kg·ha-1.
参考文献/References:
[1]王连铮,王岚,赵荣娟,等.优质、高产大豆育种的研究[J].大豆科学,2006,25(3):205-211.(WANG L Z,WANG L,ZHAO R J, et al. Study on breeding of high quality and high yield soybean[J].Soybean Science, 2006,25(3):205-211.)[2]REN Y Y,LIU J J,WANG Z J, et al.Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau,China[J].European Journal of Agronomy,2016,72:70-79.[3]CARPENTER A C,BOARD J E.Growth dynamic factors controlling soybean yield stability across plant populations[J]. Crop Science,1997,37(5):1520-1526.[4]张伟,张惠君,王海英,等.株行距和种植密度对高油大豆农艺性状及产量的影响[J].大豆科学,2006,25(3):283-287. (ZHANG W, ZHANG H J, WANG H Y, et al. Effects of spacings and planting densities on agronomic traits and yield in high oil soybeans[J].Soybean Science, 2006,25 (3):283-287.)[5]董钻.大豆产量生理[M].北京:中国农业出版社,2012:125-132,148-155. (DONG Z. Soybean yield physiology[M].Beijing:China Agriculture Press, 2012:125-132,148-155.)[6]王跃强,王曙明,赵丽梅,等.杂交大豆昆虫传粉及制种技术研究进展[J].吉林农业科学,2008(3):5-8. (WANG Y Q,WANG S M,ZHAO L M,et al. Progress in studies of insect pollinators and seed producing techniques of soybean hybrids[J].Journal of Jilin Agricultural Sciences,2008(3):5-8.)[7]陈圣伦.玉/豆套作模式的群体配置技术及其对大豆的效应研究[D].雅安:四川农业大学,2008.(CHEN S L.Study on population allocation technology of maize / soybean intercropping model and its effect on soybean[D].Ya′an: Sichuan Agricultural University,2008.)[8]ECHARTE L,MAGGIORA A D,CERRUDO D.Yield response to plant density of maize and sunflower intercropped with soybean[J].Field Crops Research,2011,121(3):423-429.[9]于洪久.种植密度对大豆光合生理及产量的影响[J].大豆科学,2009,28(6):1115-1118.(YU H J. Effects of plant density on photosynthetic characteristics and yield of soybean[J].Soybean Science,2009,28(6):1115-1118.)[10]赵丽梅,彭宝,王跃强,等.种植方式、疏叶及昆虫对杂交大豆制种产量的影响[J].中国油料作物学报,2012,34(5):478-482. (ZHAO L M, PENG B, WANG Y Q, et al. Effects of planting patterns, leaf trimming and pollinator on hybrid soybean seed production[J].Chinese Journal of Oil Crop Sciences,2012,34(5):478-482.)[11]蓝福生.农业新技术在植物营养与施肥研究中的应用[J].广西植物,1998,18(3):285-290. (LAN F S.The application of new agricultural technology in the research of plant nutrition and fertilization[J].Guihaia,1998,18(3):285-290.)[12]宁海龙,胡国华,李文滨,等.氮磷钾底肥对大豆蛋白质含量的效应[J].大豆科学,2006,25(3):288-293.(NING H L,HU G H, LI W B, et al.The effects of based NPK fertilizer on protein content in soybean[J].Soybean Science,2006,25(3):288-293.)[13]郑淑琴.钾对大豆生理效应及产量和品质的影响[J].黑龙江农业科学,2001(4):25-27. (ZHENG S Q. Effect of potassium on the physiology, yield and quality of soybean[J].Heilongjiang Agricultural Sciences,2001(4):25-27.)[14]付春旭.种植密度对绥农22大豆产量及品质影响的研究[J].黑龙江农业科学,2011(7):29-32.(FU C X. Research of planting density on yield and quality of Suinong 22[J].Heilongjiang Agricultural Sciences,2011(7):29-32.)[15]苏代群,张楷歆,李文霞,等.不同施氮条件下大豆形态与产量相关性状的QTL分析[J].大豆科学,2020,39(2):198-204.(SU D Q, ZHANG K X, LI W X, et al.QTL analysis of morphological and yield-related traits of soybean under different nitrogen levels[J].Soybean Science, 2020, 39(2): 198-204.)[16]章建新,倪丽,翟云龙.施氮对高产春大豆氮素吸收分配的影响[J].大豆科学,2005,24(1):38-42.(ZHANG J X,NI L,ZHAI Y L. Effect on nitrogen fertilizer application to the absorption and distribution of nitrogen in spring soybean[J].Soybean Science, 2005,24(1):38-42.)[17]马春梅,唐远征,龚振平,等.不同施氮量对大豆吸收化肥氮效率的影响[J].大豆科学,2005,24(1):34-37.(MA C M,TANG Y Z,GONG Z P, et al. The influence on different nitrogen levels to the nitrogen absorption rate in soybean[J].Soybean Science, 2005,24(1):34-37.)[18]郭泰,刘秀芝,郑殿峰,等.氮素后移施肥对大豆产量及品质的影响[J].大豆科学,2015,34(1):168-171.(GUO T,LIU X Z,ZHENG D F, et al. Effects of delayed nitrogen fertilizer application on yield and quality of soybean[J].Soybean Science,2015,34(1):168-171.)[19]李灿东,郭泰,郑伟,等.播种密度及施肥水平对耐密植大豆合农76产量性状的影响[J].大豆科学,2017,36(5):727-732,736.(LI C D, GUO T, ZHENG W, et al. Effect of sowing density and fertilizer levels on the yield traits of high dense planting soybean cultivar Henong 76[J]. Soybean Science, 2017,36(5):727-732,736.)[20]任小俊,吕新云,马俊奎.种植密度与施肥水平对山西早熟夏大豆产量与主要农艺性状的影响[J].大豆科学,2019,38(6):921-927.(REN X J, LYU X Y, MA J K. Effects of different planting densities and fertilization levels on yield and main agronomic characters of early-maturing summer soybean in Shanxi Province[J].Soybean Science,2019,38(6):921-927.)[21]周长军,陈井生,田中艳,等.黑龙江省风沙半干旱地区根瘤菌与氮肥耦合大豆高效施肥方式研究[J].大豆科学,2020,39(6):912-918.(ZHOU C J,CHEN J S, TIAN Z Y,et al. Study on high efficient fertilization methods of coupling effect of rhizobium and nitrogen fertilizer in wind sand and semi-arid area of Heilongjiang Province[J].Soybean Science, 2020,39(6):912-918.)[22] 刘金印,张恒善,王大秋.大豆种植密度和群体结构的研究[J].大豆科学,1987,6(1):1-10.(LIU J Y,ZHANG H S,WANG D Q. Studies on soybean plant density and its index of population structure[J].Soybean Science,1987,6(1):1-10.)[23]CURRIE R W,WINSTON M L,SLESSOR K N,et al. Effect of synthetic queen mandibular pheromone sprays on pollination of fruit crops by honeybees (Hymenoptera:Apidae)[J].Journal of Economic Entomology,1992, 85: 1293-1299.[24]SHEPPARD W S,JAYCOX E R,PARISE S G. Selection and management of honeybees for pollination of soybeans[C]//Proceeding IV lntrnational Symposium Pollination. Maryland Agricultral Experiment Station Specific Misc Publisher,1979: 123-130.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]郑殿峰,张晓艳,李建英,等.大豆群体光合特性的研究现状[J].大豆科学,2007,26(03):412.[doi:10.3969/j.issn.1000-9841.2007.03.026]
ZHENG Dian-feng,ZHANG Xiao-yan,LI Jian-ying,et al.THE RECENT RESEARTH CONCERING PHOTOSYNTHETIC CHARACTERS IN SOYBEAN POPULATION[J].Soybean Science,2007,26(06):412.[doi:10.3969/j.issn.1000-9841.2007.03.026]
备注/Memo
收稿日期:2022-05-30