ZHOU Hui-wen,HUANG Chao-ping,WANG Zi-yi,et al.Comprehensive Evaluation of Aluminum Toxicity Tolerance and Screening of Germplasms During Seedling Stage in Soybean[J].Soybean Science,2022,41(06):654-662.[doi:10.11861/j.issn.1000-9841.2022.06.0654]
大豆苗期耐铝毒特性综合评价及种质筛选
- Title:
- Comprehensive Evaluation of Aluminum Toxicity Tolerance and Screening of Germplasms During Seedling Stage in Soybean
- Keywords:
- soybean; tolerance to aluminum toxicity; germplasm evaluation; root length; cluster analysis
- 文献标志码:
- A
- 摘要:
- 铝毒是酸性土壤中一种主要的非生物胁迫,严重影响大豆的生长与产量形成,筛选耐铝毒大豆种质对耐铝毒研究具有重要意义。为筛选苗期铝毒处理适宜浓度,采用6种铝离子浓度(0,50,100,150,200和300 μmol?L-1)处理7种大豆种质;使用已筛选适宜铝毒浓度处理256份遗传变异广泛的大豆种质,以主根相对伸长率、相对总根长、相对总根表面积、相对平均根直径、相对总根尖数为评价指标,采用相关性分析、主成分分析、隶属函数值和聚类分析方法综合评价各种质苗期耐铝毒性。结果表明:在100 μmol?L-1处理下,主根伸长量、总根长分别较对照(0 μmol?L-1)下降19.10%和32.00%,150 μmol?L-1抑制程度过大,选择适宜铝毒处理浓度为100 μmol?L-1。铝毒胁迫对不同大豆种质各单项耐铝毒指数存在不同程度影响,与对照相比,主根伸长量、总根长、总根表面积和总根尖数平均值分别下降了33.24%、43.75%、37.52%和42.06%,平均根直径增加了6.05%。基于综合评价值聚类分析,将256份大豆种质分为5个耐性等级,分别为耐铝毒性强种质(23份)、耐铝毒中等种质(53份)、耐铝毒一般种质(128份)、铝毒敏感种质(41份)、铝毒强敏感种质(11份)。本研究筛选出的耐铝毒性强与铝毒强敏感大豆种质,可为大豆耐铝毒性育种和耐性机制研究提供种质资源。
- Abstract:
- Aluminum (Al) toxicity is a major abiotic stress in acidic soils, which seriously affects the growth and yield formation of soybean. It is great significance for the research of Al toxicity tolerance by screening of Al-tolerant soybean germplasms. In this study, to screen the optimum Al3+concentration during seedling stage, seven soybean germplasms were treated with six different concentration (0, 50, 100, 150, 200 and 300 μmol?L-1). Then, 256 soybean germplasms with extensive genetic variation were treated with the optimum concentration. The relative main root elongation, relative total root length, relative total root surface area, relative average root diameter, and relative total root tip number were used as evaluation indicators for comprehensive evaluation of Al toxicity tolerance during seedling stage by correlation analysis, principal component analysis, principal component analysis and cluster analysis. The results showed that the main root elongation and total root length were respectively decreased by 19.10% and 32.00% under 100 μmol?L-1 compared with the control (0 μmol?L-1), and 150 μmol?L-1 inhibited too great, so 100 μmol?L-1 was the optimum concentration for germplasms treatment. Al toxicity stress had different degrees of influence on the individual Al tolerance index of different soybean germplasms at seedling stage. Compared with the control, the main root elongation, total root length, total root surface area, total root tip number decreased by 33.24%, 43.75%, 37.52% and 42.06%, and the average root diameter increased by 6.05%. Based on the cluster analysis of comprehensive evaluation values, 256 soybean germplasms were divided into five tolerance grades, which were the strong Al toxicity tolerance germplams (23 accessions), the medium Al toxicity tolerance germplams (53 accessions), the normal Al toxicity tolerance germplams (128 accessions), the Al toxicity sensitive accessions (41 accessions), and the highly Al toxicity sensitive accessions (11 accessions). In this study, the soybean germplasms with strong aluminum toxicity resistance and strong aluminum toxicity sensitivity was screened, which can provide germplasm resources for the breeding and resistance mechanism study of aluminum toxicity of soybean.
参考文献/References:
[1]KOCHIAN L V, PIEROS M A, LIU J, et al. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66(1): 571-598.[2]徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160-167. (XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160-167.)[3]ALMEIDA G H G D, SIQUEIRA-SOARES R D C, MOTA T R, et al. Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth[J]. Plant Physiology and Biochemistry, 2021, 159: 335-346.[4]SILVA C O, BRITO D S, DA SILVA A A, et al. Differential accumulation of aluminum in root tips of soybean seedlings[J]. Brazilian Journal of Botany, 2020, 43(1): 99-107.[5]YANG J L, FAN W, ZHENG S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots[J]. Journal of Zhejiang University Science B, 2019, 20(6): 513-527.[6]孟赐福, 傅庆林, 水建国, 等. 土壤酸度对大豆、油菜生长和产量的影响[J]. 中国农业科学, 1994, 27(3): 63-70. (MENG C F, FU Q L, SHUI J G, et al. Growth and yield of soybeans and rapeseed to soil acidity[J]. Scientia Agricultura Sinica, 1994, 27(3): 63-70.)[7]GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.[8]杨丹,朱满德. 我国大豆生产格局与区域比较优势演变探析[J]. 国土与自然资源研究, 2020(1): 58-64. (YANG D, ZHU M D. Analysis on the evolution of soybean production patterns and regional comparative advantages in China[J]. Territory & Natural Resources Study, 2020(1): 58-64.)[9]刘莹, 盖钧镒, 吕慧能. 大豆根区逆境耐性的种质鉴定及其与根系性状的关系[J]. 作物学报, 2005, 31(9): 1132-1137. (LIU Y, GAI J Y, LYU H N. Identification of rhizosphere abiotic stress tolerance and related root traits in soybean [Glycine max (L.) Merr.][J]. Acta Agronomica Sinica, 2005, 31(9): 1132-1137.[10]齐波, 赵团结, 盖钧镒. 中国大豆种质资源耐铝毒性的变异特点及优选[J]. 大豆科学, 2007, 26(6): 813-819. (QI B, ZHAO T J, GAI J Y. Characterization of variation and identification of elite accessions of aluminum toxin tolerance soybean germplasm in China[J]. Soybean Science, 2007, 26(6): 813-819.)[11]刘德兴, 年海, 杨存义, 等. 耐酸铝大豆品种资源的筛选与鉴定[J]. 大豆科学, 2013, 32(1): 46-49. (LIU D X, NIAN H, YANG C Y. Screening and identifying soybean germplasm tolerant to acid aluminum[J]. Soybean Science, 2013, 32(1): 46-49.)[12]汪明华, 李佳佳, 陆少奇, 等. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定[J]. 植物遗传资源学报, 2019, 20(4): 891-902. (WANG M H, LI J J, LU S Q, et al. construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean[J]. Journal of Plant Genetic Resources, 2019, 20(4): 891-902.)[13]靳路真, 王洋, 张伟, 等. 大豆品种(系)耐热性鉴定及分级评鉴[J]. 中国油料作物学报, 2016, 38(1): 77-87. (JIN L Z, WANG Y, ZHANG W, et al. Grading evaluation on heat-tolerance in soybean and identification of heat-tolerant cultivars[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 77-87.)[14]张海平, 张俊峰, 陈妍, 等. 大豆种质资源萌发期耐旱性评价[J]. 植物遗传资源学报, 2021, 22(1): 130-138. (ZHANG H P, ZHANG J F, CHEN Y, et al. Identification and evaluation of soybean germplasm resources for drought tolerance during germination stage[J]. Journal of Plant Genetic Resources, 2021, 22(1): 130-138.)[15]王鹏, 侯思宇, 温宏伟, 等. 干旱胁迫对滞绿大豆种子萌发的影响及芽期抗旱性评价[J]. 大豆科学, 2021, 40(1): 68-74. (WANG P, HOU S Y, WEN H W, et al. Effects of drought stress on seed germination and evaluation of drought resistance in bud stage of stay-green soybean[J]. Soybean Science, 2021, 40(1): 68-74.)[16]石广成, 杨万明, 杜维俊, 等. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2021, 38(4): 174-183. (SHI G C, YANG W M, DU W J, et al. Screening of salt-tolerant soybean germplasm and analysis of physiological characteristics of its salt tolerance[J]. Biotechnology Bulletin, 2021, 38(4): 174-183.[17]武海燕, 李喜焕, 李文龙, 等. 大豆耐低磷性状鉴定及优异种质筛选[J]. 河南农业科学, 2020, 49(1): 61-67. (WU H Y, LI X H, LI W L, et al. Identification of low phosphorus tolerant traits and selection of elite genotypes in soybean[J]. Journal of He′nan Agricultural Sciences, 2020, 49(1): 61-67.)[18]李德华, 贺立源, 刘武定. 玉米自交系耐铝性评价及根系形态解剖特征[J]. 作物学报, 2004, 30(9): 947-952. (LI D H, HE L Y, LIU W D. The Al-tolerance evaluation and anatomical characteristics of roots in inbred lines of maize[J]. Acta Agronomica Sinica, 2004, 30(9): 947-952.)[19]LIU J, WANG X, WANG N, et al. Comparative analyses reveal peroxidases play important roles in soybean tolerance to aluminum toxicity[J]. Agronomy, 2021, 11: 670.[20]ZHAO L, CUI J, CAI Y, et al. Comparative transcriptome analysis of two contrasting soybean varieties in response to aluminum toxicity[J]. International Journal of Molecular Sciences, 2020, 21(12): 4316.[21]熊洁, 丁戈, 陈伦林, 等. 不同基因型油菜耐铝性及其根系形态对铝胁迫的响应[J]. 中国油料作物学报, 2021, 43(4): 673-682. (XIONG J, DING G, CHEN L L, et al. Aluminum tolerance and root morphology response from different rapeseed cultivars under aluminum stress[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 673-682.)[22]LI Y, YE H, SONG L, et al. Identification and characterization of novel QTL conferring internal detoxification of aluminium in soybean[J]. Journal of Experimental Botany, 2021, 72(13): 4993-5009.[23]应小芳, 刘鹏, 徐根娣, 等. 大豆耐铝毒基因型筛选及筛选指标的研究[J]. 中国油料作物学报, 2005, 27(1): 46-51. (YING X F, LIU P, XU G D, et al. Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indices[J]. Chinese Journal of Oil Crop Sciences, 2005, 27(1): 46-51.)[24]刘莹, 盖钧镒. 大豆耐铝毒的鉴定和相关根系性状的遗传分析[J]. 大豆科学, 2004, 23(3): 164-168. (LIU Y, GAI J Y. Identification of tolerance to aluminum toxin and inheritance of related root traits in soybeans [Glycine max (L.) Merr.][J]. Soybean Science, 2004, 23(3): 164-168.)[25]郑阳霞, 赵善梅, 向前, 等. 铝胁迫对豆瓣菜生理特性及营养元素吸收的影响[J]. 甘肃农业大学学报, 2019, 54(4): 83-91. (ZHENG Y X, ZHAO S M, XIANG Q, et al. Effects of aluminum stress on physiological and biochemical characteristics and nutrient element absorption of watercress[J]. Journal of Gansu Agricultural University, 2019, 54(4): 83-91.)[26]崔翠, 程闯, 赵愉风, 等. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805. (CUI C, CHENG C, ZHAO Y F, et al. Screening and comprehensive evaluation of aluminum-toxicity tolerance during germination stage in 52 varieties (lines) of pea germplasm[J]. Acta Agronomica Sinica, 2019, 45(5): 798-805.)[27]田聪, 张烁, 粟畅, 等. 铝胁迫下大豆根系有机酸积累的特性[J]. 大豆科学, 2017, 36(2): 256-261. (TIAN C, ZHANG S, SU C, et al. Effects of aluminum (Al) on organic acid accumulation in soybean roots[J]. Soybean Science, 2017, 36(2): 256-261.)[28]刘鹏, YANG Y S, 徐根娣, 等. 铝胁迫对大豆幼苗根系形态和生理特性的影响[J]. 中国油料作物学报, 2004, 26(4): 51-56. (LIU P, YANG Y S, XU G D, et al. The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling[J]. Chinese Journal of Oil Crop Sciences,2004, 26(4): 51-56.) [29]ZHOU H W, XIAO X J, ASJAD A, et al. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.)[J]. BMC Plant Biology, 2022, 22(1): 130.[30]郜欢欢, 叶桑, 王倩, 等. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430. (GAO H H, YE S, WANG Q, et al. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus[J]. Acta Agronomica Sinica, 2019, 45(9): 1416-1430.)[31]慈敦伟, 丁红, 张智猛, 等. 花生耐盐性评价方法的比较与应用[J]. 花生学报, 2013, 42(2): 28-35. (CI D W, DING H, ZHANG Z M, et al. Comparison and application of different evaluation methods on peanut salt tolerance[J]. Journal of Peanut Science, 2013, 42(2): 28-35.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]刘莹 盖钧镒.大豆耐铝毒的鉴定和相关根系性状的遗传分析[J].大豆科学,2004,23(03):164.[doi:10.11861/j.issn.1000-9841.2004.03.0164]
Liu Ying Gai Junyi.IDENTIFICATION OF TOLERANCE TO ALUMINUM TOXIN AND INHERITANCEOFRELATED ROOT TRAITS IN SOYBEANS (Glycine max(L)Merr.)[J].Soybean Science,2004,23(06):164.[doi:10.11861/j.issn.1000-9841.2004.03.0164]
备注/Memo
收稿日期:2022-06-16