WANG Shuang,ZHANG Shun-bin,WANG Xu-dong,et al.Expression Analysis of GmCHS Gene and Isoflavone Content Changes Under Soybean Cyst Nematode Stress[J].Soybean Science,2021,40(01):21-27.[doi:10.11861/j.issn.1000-9841.2021.01.0021]
大豆胞囊线虫胁迫下GmCHS基因表达及异黄酮含量变化分析
- Title:
- Expression Analysis of GmCHS Gene and Isoflavone Content Changes Under Soybean Cyst Nematode Stress
- 文章编号:
- 2021,40(1):021-027
- Keywords:
- Soybean; Soybean cyst nematode; Chalcone synthase; Differential expression gene; Isoflavone
- 文献标志码:
- A
- 摘要:
- 异黄酮作为植保素,在生物因素、非生物因素的胁迫下,都发挥着重要抗逆作用,而查尔酮合成酶(CHS)是异黄酮形成途径中的关键位点,为研究GmCHS在大豆胞囊线虫胁迫下的响应表达,以便进一步揭示大豆抗大豆胞囊线虫的分子机理,本研究选取抗病品种灰皮支黑豆和感病品种Williams 82,在大豆胞囊线虫3号生理小种胁迫后的不同时期检测CHS5、CHS7、CHS8、CHS9基因的表达,并测定其下游产物异黄酮成分中的大豆苷元和黄豆黄素的含量。结果显示:感病品种中CHS5、CHS7、CHS8、CHS9基因的相对表达量变化程度较抗病品种小。胁迫5 d时,抗病品种中4个查尔酮合成酶基因均明显上调表达,与实验室前期大豆转录组测序中CHS7、CHS8均上调表达结果一致。进一步对两个品种主要异黄酮成分含量的检测结果表明,大豆苷元相较于黄豆黄素在大豆胞囊线虫胁迫下响应更加敏感,其中大豆苷元在Williams 82无响应,而在灰皮支黑豆接种5,10,15 d均出现了显著差异,可见异黄酮中的大豆苷元很可能是响应大豆胞囊线虫胁迫的重要成分之一。因此,初步认为CHS基因在抗大豆胞囊线虫的抗性机制中具有重要作用。
- Abstract:
- As phytoalexin, under the stress of biotic and abiotic factors, isoflavones play an important role in resisting stress. Chalcone synthase (CHS) is a key site in isoflavone formation pathway, CHS response expression under soybean cyst nematode stress, it is beneficial to further reveal the molecular mechanism of soybean resistance to soybean cyst nematode. In this study, we selected disease-resistant varieties of Huipizhi Heidou and susceptible varieties of Williams 82 as the research objects. The expressions ofCHS5, CHS7, CHS8andCHS9were detected at different periods after the treatment of soybean cyst nematode race 3, and the content of daidzein and glycintein in the downstream product isoflavones were determined. According to the results, the relative expression ofCHS5, CHS7, CHS8andCHS9genes in susceptible varieties changed less than resistant varieties. At 5 day of stress, the 4 CHS genes in the disease-resistant cultivars were all significantly up-regulated, which was consistent with the up-regulated expression results ofCHS7andCHS8of soybean transcriptome sequencing. Under the stress of SCN3, combined with soybean transcriptome sequencing analysis results showed thatCHS7andCHS8up-regulated expression. Further detection of the content of the main isoflavone components of the 2 varieties showed that daidzein was more sensitive to the response of soybean cyst nematode than glycintein. Among them, daidzein did not respond to Williams 82, however, there were significant differences in the 5, 10 and 15 days of the inoculation of the Huipizhi Heidou. It could be seen that the daidzein in isoflavones was likely to be one of the important components in response to soybean cyst nematode stress. Therefore, it was preliminarily believed that the CHS gene plays an important role in the resistance mechanism of soybean cyst nematode.
参考文献/References:
[1] Zhao J, Liu D, Wang Y Y, et al. Evaluation of Bacillus aryabhattai Sneb517 for control of Heterodera glycines in soybean[J]. Biological Control,2020,142:104147. [2] Waki T, Yoo D, Fujino N, et al. Identification of protein-protein interactions of isoflavonoid biosynthetic enzymes with2-hydroxyisoflavanone synthase in soybean (Glycine max [L.]Merr.) [J]. Biochemical and Biophysical Research Communication, 2016,469(3):546-551. [3] Russin J S, Layton M B, Boethel D J, et al. Development of Heterodera glycines on soybean damaged by soybean looper and stem canker[J]. Journal of Nematology, 1989,21(1):108-114. [4] 邢军,李友广,谢丽琼.黄酮类化合物——植物异黄酮的研究进展与展望[J].新疆大学学报(自然科学版),2006(2):207-210.(Xing J,Li Y G,Xie L Q,et al.Study development and expectation of isoflavones in plants-compounds of flavonoids[J]. Journal of Xinjiang University(Natural Science Edition),2006(2):207-210.) [5] 邱佳文. 生防根瘤菌Sneb183调控大豆异黄酮代谢抗胞囊线虫机理研究[D].沈阳:沈阳农业大学,2018.(Qiu J W. Biocontrol rhizobium Sneb183 regulates soybean[D]. Shenyang: Shenyang Agricultural University,2018.) [6] Cheng Q, Li N, Dong L, et al. Overexpression of soybeanisoflavone reductase (GmIFR) enhances resistance to Phytophthorasojae in soybean[J]. Front Plant Science,2015,6:1024. [7] Graham T L, Graham M Y, Subramanian S, et al. RNAi silencing of genes for elicitation or biosynthesis of5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues[J]. Plant Physiology, 2007, 144(2):728-740. [8] 郭春红. 异黄酮在大豆抗胞囊线虫过程中的作用研究[D].沈阳:沈阳农业大学,2017.(Guo C H. Function of soybean isoflavoes on induced resistance to soybean cyst nematode[D]. Shenyang: Shenyang Agricultural University,2017.) [9] Anguraj V A K, Krysiak K, Tian G,et al. Genome-wide identificationand localization of chalcone synthase family in soybean (Glycine max [L.]Merr.)[J]. BMC Plant Biology,2018,18(1):325. [10] Jez J M, Noel J P. Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase[J]. The Journal of Biological Chemistry, 2000,275(50):39640-39646. [11] Hutangura P, Mathesius U, Jones M G K,et al. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway[J]. Functional Plant Biology,1999, 26(3): 221-231. [12] Zhi B W, Qi B Y, Wan X S, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J]. BMC Plant Biology, 2018, 18(1): 189. [13] 杨悦. GmCHS基因生物信息学分析及过表达载体构建[J]. 沈阳:沈阳农业大学,2017. ( Yang Y. GmCHS bioinformatics analysis and delivery vector construction[D]. Shenyang: Shenyang Agricultural University,2017.)〖HJ1.8mm〗 [14] Verhoeyen M E, Bovy A, Collins G, et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany, 2002,53(377):2099-2106. [15] 李爽. 灰皮支黑豆抗大豆胞囊线虫转录组及蛋白质网络研究[D].沈阳: 沈阳农业大学,2018.(Li S. Study on transcriptome and protein interaction network of Huipizhi Heidou resistance to soybean cyst nematode[D]. Shenyang: Shenyang Agricultural University,2018.) [16] 王超. 响应大豆胞囊线虫胁迫的GmMIPS基因的表达分析及 亚细胞定位的研究[D].沈阳: 沈阳农业大学,2019.(Wang C.Expression analysis of GmMIPS gene and subcellular localizationunder SCN stress[D]. Shenyang: Shenyang Agricultural University, 2019.) [17] Ng J L, Perrine-Walker F, Wasson A P, et al. The control of auxin transport in parasitic and symbiotic root-microbe interactions[J]. Plants (Basel),2015,4(3):606-643. [18] Wang Z, Yu Q, Shen W, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J].BMC Plant Biology, 2018,18(1):189. [19] 孙家骥.灰皮支黑豆抗胞囊线虫谷胱甘肽合成途径相关基因的克隆与表达分析[D].沈阳: 沈阳农业大学,2016. (Sun J J. Cloning and expression analysis glutathione synthesis related genes for the Huipizhi Heidou resistant to Heterodera glycines[D]. Shenyang: Shenyang Agricultural University,2016.) [20] Lyle R, Senthil S, Michiyo M, et al. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases[J]. Plant Physiology, 2005,137(4): 1375-1388. [21] Ryo M, Toshiyuki W , Yosuke K , et al. Involvement of chalcone reductase in the soybean isoflavone metabolon:Identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase[J]. The Plant Journal, 2018, 96(1):56-74. [22] Fan C, Hu H, Wang L, et al. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation[J].Environmental Science and Pollution Research International,2014,21(14):8792-8800. [23] Yang L, Zhang J C, Qu J T, et al. Expression response of chalcone synthase gene to inducing conditions and its effect on flavonoids accumulation in two medicinal species of Anoectochilus[J]. Science Report,2019,9(1):20171. [24] Hutangura P, Mathesius U, Jones M G K, et al. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway[J]. Functional Plant Biology, 1999, 26(3):221-231. [25] 甘林鑫. 三种色系牡丹花色素组成及相关基因表达分析[D]. 杨凌:西北农林科技大学,2019.(Gan L X. Analysis of the composition of three color peony anthocyanins and related gene expression[D]. Yangling: Northwest A & F University,2019.) [26] 梁先利. 陆地棉叶色突变体花青素代谢及GhCHS,GhLAR和GhANR基因功能的初步分析[D].杭州:浙江理工大学,2019.(Liang X L. The preliminary study of anthocyanin metabolism and GhCHS, GhANR and GhLAR in leaf color mutants of Gossypiumhirsutum L.[D]. Hangzhou: ZhejiangSci-Tech University,2019.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
国家自然科学基金重点项目(31330063)。