LI Sheng-you,SUN Xu-gang,WANG Chang-ling,et al.Effects of Different Drought Tolerant Soybean Roots on Photosynthesis of Leaves Based on Grafting Technology[J].Soybean Science,2020,39(05):751-757.[doi:10.11861/j.issn.1000-9841.2020.05.0751]
基于嫁接技术评价不同耐旱型大豆根系对叶片光合参数的影响
- Title:
- Effects of Different Drought Tolerant Soybean Roots on Photosynthesis of Leaves Based on Grafting Technology
- Keywords:
- Soybean; Grafting; Root; Drought resistance; Photosynthetic capacity
- 文献标志码:
- A
- 摘要:
- 为阐明不同耐旱型根系的生理特征及其对叶片光合参数的影响,从而为大豆根系改良和抗旱育种提供理论依据,采用嫁接技术,以干旱敏感型品种辽豆21作为共同接穗,分别与22份辽宁省育成大豆品种砧木嫁接,评价22份根系对植株抗旱性的贡献能力。采用盆栽试验,在结荚期设置正常供水(80%田间持水量)和干旱胁迫(50%田间持水量)处理,控水后15 d测定根系生理性状,成熟期根据产量性状计算各嫁接植株的耐旱隶属函数值。结果表明:不同嫁接植株的耐旱隶属函数值为0.23~0.84,根据聚类分析将22个品种砧木分别划分为6个干旱敏感型、10个中间型和6个耐旱型。正常供水条件下,不同类耐旱型砧木的根系伤流液重量和根系活力无显著差异,但干旱胁迫下表现为:耐旱型>中间型>干旱敏感型。干旱胁迫下,嫁接干旱敏感型砧木的大豆植株的叶片相对含水量、光合速率、气孔导度和蒸腾速率下降幅度最大,而嫁接耐旱型砧木的大豆植株则仍能维持较高的叶片相对含水量、光合速率、气孔导度和蒸腾速率。由此说明,干旱下耐旱型根系具有较强的生理活性,从而能够提高大豆植株的抗旱性。
- Abstract:
- In order to determine the physiological characteristics of different drought-tolerant types of roots and their effects on photosynthetic traits of leaves, so as to provide theoretical basis for soybean root improvement and drought-resistant breeding, this study used drought-sensitive cultivar Liaodou 21 as scion to graft with 22 cultivars rootstocks to evaluate the contribution of roots to drought resistance of 22 soybean cultivars released in Liaoning province. Well-watered (80% field water holding capacity) and drought stress (50% field water holding capacity) were conducted during podding stage in pot-culture experiments. Root physiological traits were determined at 15 d after drought stress, and the drought resistance membership function values of each grafted plant were calculated according to the yield traits at maturity. The results showed that the drought resistance membership function values of different grafts varied from 0.23 to 0.84, and 22 genotypes of rootstocks were divided into 6 drought-sensitive types, 10 intermediate types and 6 drought-resistant types by cluster analysis. There was no significant difference in root bleeding sap mass and root activity among rootstocks under well-watered conditions, but under drought stress, the results showed that, drought-resistant type>intermediate type>drought-sensitive type. Under drought stress, the plants grafted onto drought-sensitive rootstocks showed larger decreases in the relative water content, photosynthetic rate, stomatal conductance and transpiration rate, while these grafted onto drought-resistant rootstocks remained relatively high relative water content, photosynthetic rate, stomatal conductance and transpiration rate. Therefore, the drought-tolerant root system has strong physiological activity under drought, which could improve the drought resistance of soybean plants.
参考文献/References:
[1]Koester R P, Nohl B M, Diers B W, et al. Has photosynthetic capacity increased with 80 years of soybean breeding ? An examination of historical soybean cultivars[J]. Plant, Cell and Environment, 2016, 39: 1058-1067.[2]Yahoueian S H, Behamta M R, Babaie H R, et al. Screening of drought-tolerant and sensitive genotypes in soybean (Glycine max L.) using different multivariate methods[J]. International Journal of Agricultural Research, Innovation and Technology, 2018, 7: 7-17.[3]Frederick J R, Camp C R, Bauer P J. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean[J]. Crop Science, 2001, 41, 759-763.[4]Sadeghipour O, Abbasi S. Soybean response to drought and seed inoculation[J]. World Applied Sciences Journal, 2012, 17: 55-60.[5]李文滨, 宋春晓, 苌兴超, 等. 干旱胁迫下20个大豆品种抗旱性评价[J]. 东北农业大学学报, 2019, 5(14): 1-9. (Li W B, Song C X, Chang X C, et al. Drought resistance evaluation of 20 soybean varieties under drought stress[J]. Journal of Northeast Agricultural University, 2019, 5(14): 1-9.)[6]谭春燕,杨文钰,陈佳琴, 等. 干旱胁迫下大豆种质资源的生理响应及抗旱性评价[J].分子植物育种,2020,18(4):1349-1356.(Tan C Y, Yang W Y, Chen J Q, et al. The physiological response and drought resistance assessment of soybean germplasm resources under drought stress[J]. Molecular Plant Breeding,2020,18(4):1349-1356.)[7]祁旭升, 刘章雄, 关荣霞, 等. 大豆成株期抗旱性鉴定评价方法研究[J]. 作物学报, 2012, 38(4): 665-674. (Qi X S, Liu Z X, Guan R X, et al. Comparison of evaluation methods for drought-resistance at soybean adult stage[J]. Acta Agronomica Sinica, 2012, 38(4): 665-674.)[8]王伟, 姜伟, 张金龙, 等. 大豆种质的耐旱性鉴定及耐旱指标筛选[J]. 大豆科学, 2015, 34(5): 808-818. (Wang W, Jiang W, Zhang J L, et al. Selection of drought-tolerant soybean and evaluation of the drought tolerance indices[J]. Soybean Science, 2015, 34(5): 808-818.)[9]韩新华,马淑梅,付雪, 等. 东北春大豆抗旱品种根系特征的研究[J].中国农学通报, 2019, 35(12):34-39. (Han X H, Ma S M, Fu X, et al. Root characteristics of drought-resistant cultivars of spring soybeans in Northeast China[J]. Chinese Agricultural Science Bulletin, 2019, 35(12):34-39.)[10]Yamaguchi M, Sharp R E. Complexity and coordination of root growth at low water potentials:Recent advances from transcriptomic and proteomic analyses[J]. Plant, Cell and Environment, 2010, 33: 590-603. [11]He J, Du Y L, Wang T, et al. Conserved water use improves the yield performance of soybean [Glycine max (L.) Merr.] under drought[J]. Agricultural Water Management, 2017, 179: 236-245. [12]Manavalan L P, Guttikonda S K, Tran L S P, et al. Physiological and molecular approaches to improve drought resistance in soybean[J]. Plant and Cell Physiology, 2009, 50: 1260-1276.[13]Thao N P, Tran L S P. Potentials toward genetic engineering of drought-tolerant soybean[J]. Critical Reviews in Biotechnology, 2012, 32: 349-362.[14]Nguyen H T, Babu R C, Blum A. Breeding for drought resistance in rice:Physiology and molecular genetics considerations[J]. Crop Science, 1997, 37: 1426-1434.[15]Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China[J]. Journal of Experimental Botany, 2010, 61: 3509-3517.[16]Roth U, von Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+[J]. Journal of Experimental Botany, 2006, 57: 4003-4013.[17]曹晓宁. 利用嫁接技术研究不同年代大豆品种根系性状的演变[D]. 雅安: 四川农业大学, 2013. (Cao X N. Studies on the evolution of root traits of soybean varieties from different decades by using grafting technique[D]. Ya′an: Sichuan Agricultural University, 2013.)[18]Kumar P, Rouphael Y, Cardarelli M, et al. Vegetable grafting as a tool to improve drought resistance and water use efficiency[J]. Frontiers in Plant Science, 2017, 8: 1130.[19]闫春娟, 王文斌, 曹永强, 等. 不同耐旱型大豆生理特性对不同降雨条件的响应[J]. 大豆科学, 2018, 37(3):359-365. (Yan C J, Wang W B, Cao Y Q, et al. Response of physiological characteristics of different drought-tolerant soybean varieties to different rainfall climatic conditions[J]. Soybean Science, 2018, 37(3):359-365.)[20]Pantalone V R, Rebetzke G J, Burton J W, et al. Soybean PI 416937 root system contributes to biomass accumulation in reciprocal grafts[J]. Agronomy Journal, 1999, 91: 840-844.[21]Peoples M B, Faizah A W, Rerkasem B, et al. Methods for evaluating nitrogen fixation by nodulated legumes in the field[M].Australia: Australian Centre for International Agricultural Research,1989.[22]李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000: 195-197. (Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education, 2000: 195-197.)[23]Clarke J M, Romagosa I, Jana S, et al. Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments[J]. Canadian Journal of Plant Science, 1989, 69: 1075-1081.[24]Smith D M, Inman-Bamber N G, Thorburn P J. Growth and function of the sugarcane root system[J]. Field Crops Research, 2005, 92: 169-183.[25]Liang H, Yu Y, Yang H, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127: 2127-2137.[26]闫春娟,王文斌,董钻, 等. 大豆抗旱种质的鉴定及其与根系的关系[J]. 大豆科学, 2011, 30(5):790-794. (Yan C J, Wang W B, Dong Z, et al. Identification of drought stress tolerance in soybean [Glycine max( L.) Merr.] and related root traits[J]. Soybean Science, 2011, 30(5):790-794.)[27]宋书宏,王文斌,吕桂兰, 等. 北方春大豆超高产技术研究[J]. 中国油料作物学报, 2001, 23:48-50. (Song S H, Wang W B, Lyu G L, et al. Research on technology for super high yielding in spring soybean[J]. Chinese Journal of Oil Crop Sciences, 2001, 23:48-50.)[28]Li S, Teng F, Rao D, et al. Agronomic traits of soybean cultivars released in different decades after grafting record-yield cultivar as rootstock[J]. Plant Breeding, 2017, 136: 133-138.[29]Zhang M, Zhai Z, Tian X, et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.)[J]. Plant Growth Regulation, 2008, 56: 257-264.[30]Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50: 138-141.[31]Gilbert M E, Zwieniecki M A, Holbrook N M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal of Experimental Botany, 2011, 62: 2875-2887.[32]Cui X, Dong Y, Gi P, et al. Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China[J]. Photosynthetica, 2016, 54: 81-86.[33]Li S Y, Teng F, Rao D M, et al. Photosynthesis of soybean cultivars released in different decades after grafting onto record-yield cultivars as rootstocks[J]. Photosynthetica, 2017, 55: 579-587.[34]Li S Y, Wang W B, Yao X D, et al. Photosynthesis in reciprocal grafts of drought-tolerant and drought-sensitive cultivars of soybean under water stress[J]. Photosynthetica, 2019, 57: 942-949.[35]Lopes M S, Reynolds M P. Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexaploid wheat[J]. Crop Science, 2011, 51: 1617-1626.[36]Tanaka N, Kato M, Tomioka R, et al. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses[J]. Journal of Experimental Botany, 2014, 65: 1497-1512.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]滕菲,李盛有,饶德民,等.超高产大豆砧木对不同年代育成品种农艺性状的影响[J].大豆科学,2016,35(03):418.[doi:10.11861/j.issn.1000-9841.2016.03.0418]
TENG Fei,LI Sheng-you,AO De-min,et al.Effects of Super-High-Yield Soybean Cultivars as Rootstocks on AgronomicTraits of Cultivars Releaseds in Different Decades[J].Soybean Science,2016,35(05):418.[doi:10.11861/j.issn.1000-9841.2016.03.0418]
备注/Memo