ZHANG Ming,WANG Yan,ZHAO Tian-hong,et al.Effects of Straw Returning on Photosynthetic Fluorescence Characteristics and Yield of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2019,38(05):754-761.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
臭氧浓度升高条件下秸秆还田对大豆光合荧光特性及产量的影响
- Title:
- Effects of Straw Returning on Photosynthetic Fluorescence Characteristics and Yield of Soybean Under Elevated Ozone Concentration
- Keywords:
- Ozone; Soybean; Straw returning; Photosynthetic characteristics; Chlorophyll fluorescence; Yield
- 文献标志码:
- A
- 摘要:
- 为了探究臭氧浓度升高条件下秸秆还田对大豆叶片光合荧光特性及产量的影响,以铁丰29为试验材料,研究秸秆还田和臭氧浓度升高条件下大豆光合荧光特性及产量的变化规律。结果表明:随着O3浓度升高,大豆净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、水分利用效率(WUE)下降,胞间 CO2 浓度(Ci)呈先降后升的趋势;在结荚期T1处理下,S0与S1相比,Pn显著降低48.59%(P<0.05);在分枝期T2处理下,S1与S0相比,Tr、Gs显著上升51.26%和50.41%(P<0.05);PS II原初光化学效率(Fv/Fm)、PSⅡ的潜在活性(Fv/Fo)和PSⅡ的实际光化学效率(ФPSⅡ)呈先升后降的趋势,光合电子传递速率(ETR)、光化学淬灭系数(qP)降低而非光化学淬灭系数(NPQ)升高。Fv/Fo在结荚期T1处理下S1与S0相比显著降低30.13%(P<0.05)。产量与ETR、Pn呈显著正相关(P<0.05),试验表明:高浓度O3通过抑制大豆植株的光合作用、降低电子传递速率使大豆产量降低,秸秆还田在一定程度上可缓解但不能从根本上消除臭氧胁迫所带来的负面效应。
- Abstract:
- In order to investigate the effects of straw returning on photosynthetic fluorescence characteristics and yield of soybean under elevated ozone concentration, Tiefeng 29 was used as test material to study the changes of photosynthetic fluorescence parameters and yield of soybean under the conditions of straw returning and ozone concentration. The results showed that with the increase of O3 concentration, the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs) and water use efficiency (WUE) of soybean decreased, and the intercellular CO2 concentration (Ci) decreased firstly and then increased. The trend of Pn was significantly decreased by 48.59% (P<0.05) compared with S1 in T1 treatment. The Tr and Gs increased significantly by 51.26% and 50.41% compared with S0 in the T2 treatment (P<0.05);The initial photochemical efficiency (Fv/Fm) of PS II, the potential activity of PSⅡ (Fv/Fo) and the actual photochemical efficiency of PSⅡ (ФPSⅡ) increased firstly and then decreased, photosynthetic electron transport rate (ETR), photochemical quenching coefficient (qP) decreased rather than elevated photochemical quenching factor (NPQ). Compared with S0, F1/F0 significantly decreased by 30.13% (P<0.05). There was a significantly positive correlation between yield and ETR and Pn (P<0.05). The experiment showed that high concentration of O3 reduced soybean yield by inhibiting the photosynthesis of soybean plants and decreased the electron transfer rate. Straw returning to the field did alleviate to a certain extent but could not fundamentally eliminate the negative effects of ozone stress.
参考文献/References:
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]王春雨,谢志煌,李彦生,等.近地表臭氧浓度升高对不同东北品种大豆产量形成及品质的影响[J].大豆科学,2019,38(03):385.[doi:10.11861/j.issn.1000-9841.2019.03.0385]
WANG Chun-yu,XIE Zhi-huang,LI Yan-sheng,et al.Effects of Elevated Surface O3 on Soybean Yield Formation and Seed Quality in Different Northeast Cultivars[J].Soybean Science,2019,38(05):385.[doi:10.11861/j.issn.1000-9841.2019.03.0385]
[12]孙铭禹,王岩,范仁雪,等.臭氧浓度升高条件下大豆光合能力变化及光响应曲线的拟合模型比较[J].大豆科学,2021,40(04):497.[doi:10.11861/j.issn.1000-9841.2021.04.0497]
SUN Ming-yu,WANG Yan,FAN Ren-xue,et al.Comparison of Photosynthetic Capacity and Light Response Curve Models of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2021,40(05):497.[doi:10.11861/j.issn.1000-9841.2021.04.0497]
备注/Memo
收稿日期:2019-04-25