WANG Li-ping,CHEN Wen-jie,ZHAO Xing-zhong,et al.Rapid Determination of Crude Protein and Crude Oil Content of Soybean Based on Near Infrared Diffuse Reflectance Spectroscopy[J].Soybean Science,2019,38(02):280-285.[doi:10.11861/j.issn.1000-9841.2019.02.0280]
基于近红外漫反射光谱法的大豆粗蛋白和粗脂肪含量的快速检测
- Title:
- Rapid Determination of Crude Protein and Crude Oil Content of Soybean Based on Near Infrared Diffuse Reflectance Spectroscopy
- Keywords:
- Soybean; Near infrared model; Rapid determination; Protein; Crude oil
- 文献标志码:
- A
- 摘要:
- 为满足大豆品质育种快速筛选的需求,本文详细探讨了利用近红外漫反射光谱法对大豆粗蛋白和粗脂肪含量实现快速测定的可行性。采用凯氏定氮法和索氏抽提法测定了120份大豆粗蛋白和粗脂肪的含量,分别采集大豆整粒和粉末两种状态的近红外光谱,然后运用化学计量学方法PLS建立近红外光谱与化学值之间的关系模型。其中粉末大豆样品建立的粗蛋白校正模型的决定系数R2为0.978 7,校正标准误差RMSECV为0.003 8,该模型对24份待测样品进行测定的预测标准误差RMSEP为0.002 84;粗脂肪校正模型的R2为0.934 1,RMSECV为0.003 69,RMSEP为0.003 53。整粒大豆建立的粗蛋白校正模型的R2为0.872 4,RMSECV为0.009 07,RMSEP为0.007 49;粗脂肪校正模型的R2为0.876 5,RMSECV为0.005 08,RMSEP为0.004 66。对比发现,建模样品的状态对近红外模型的预测性能有重要影响,样品在粉末状态下建立的粗蛋白和粗脂肪近红外模型的预测效果更好。另一方面,由于整粒样品建立的近红外模型的R2均在0.87以上,因此当样品量较少没有足够样品可用于粉碎时,该模型可以满足对整粒大豆品质进行粗测的需求。该结果对大豆育种早代筛选工作具有重要意义。
- Abstract:
- In order to meet the need of quick determination of soybean quality, the feasibility of rapid determination of crude protein and crude fat content in soybean by near infrared diffuse reflectance spectroscopy was discussed in detail.The chemical values of crude protein and crude fat content of 120 soybeans were assayed by Kjedahl and Soxhlet methods separately. Meanwhile, near-infrared spectra of samples in the two states of whole seed and powder were collected. Finally, the correlation models between soybean spectra and chemical values were built by the partial least square(PLS) method in chemometrics. The determination coefficient (R2) of calibration model of crude protein content was 0.978 7 and the root mean square error of cross validation (RMSECV) was 0.003 8 with soybean samples in the state of powder. When 24 test samples were predicted, the root meansquare error of prediction (RMSEP) was 0.002 84. The R2 and RMSECV of crude oil content model was 0.934 1 and 0.003 69 respectively, and RMSEP was 0.003 53. The R2 and RMSECV of protein model set up by soybean whole seed samples was 0.872 4 and 0.009 07 respectively, and RMSEP was 0.007 49. The R2 and RMSECV of oil content model was 0.876 5 and 0.005 08 respectively, and RMSEP was 0.004 66. It was found that the state of calibration samples had a significant effect on the prediction ability of the model. The results indicated that the performance of crude protein and crude oil content models built by powder samples was better. On the other hand, the R2 of all models that were built by soybean whole seed samples were more than 0.87, so the models could be used to measure soybean quality roughly when the sample was not enough to grind. The results were of great importance in early screening of soybean breeding.
参考文献/References:
[1]王海杰, 林家贵, 王敏芬. 大豆品质育种研究进展[J]. 生物灾害科学,2015, 38(2): 102-105. (Wang H J, Lin J G, Wang M F. Research advance of soybean quality breeding[J]. Biological Disaster Science, 2015, 38(2): 102-105.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]王铎,张力,范素杰,等.大豆主要脂肪酸含量近红外模型的建立[J].大豆科学,2017,36(02):295.[doi:10.11861/j.issn.1000-9841.2017.02.0295]
WANG Duo,ZHANG Li,FAN Sujie,et al.Establishment of NIRS Model for the Main Fatty Acids in Soybean[J].Soybean Science,2017,36(02):295.[doi:10.11861/j.issn.1000-9841.2017.02.0295]
备注/Memo
收稿日期:2018-10-09